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Thermodynamics with long-range interactions: From Ising models to black holes
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Methods are presented which enables one to analyze the thermodynamics of systems with long-range
interactions. Generically, such systems have entropies which are nonextelwsha scale with the size of the
system. We show how to calculate the degree of nonextensivity for such a system. We find that a system
interacting with a heat reservoir is in a probability distribution of canonical ensembles. The system still
possesses a parameter akin to a global temperature, which is constant throughout the substance. There is also
a useful quantity which acts likelacal temperaturesnd it varies throughout the substance. These quantities
are closely related to counterparts found in general relativity. A lattice model with long-range spin-spin cou-
pling is studied. This is compared with systems such as those encountered in general relativity and gravitating
systems with Newtonian-type interactions. A long-range lattice model is presented which can be seen as a black
hole analog. One finds that the analog’'s temperature and entropy have many properties which are found in
black holes. Finally, the entropy scaling behavior of a gravitating perfect fluid of constant density is calculated.
For weak interactions, the entropy scales like the volume of the system. As the interactions become stronger,
the entropy becomes higher near the surface of the system, and becomes more area scaling.
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[. INTRODUCTION (temperature, pressure, and chemical poterfiedd, then if
the size of the system is doubled, the extensive variables

In the study of thermodynamics, it is almost always im- (entropy and energywill also double. This is not true if the
plicitly assumed that the system does not possess long-rang@eractions are long range.
interactions. Very little is known about the thermodynamics The purpose of this paper is to develop methods and a
of systems which do possess long-range interactions, excefstrmalism to explore a number of facets of such nonexten-
in special cases such as plasmas where the electromagnegive systems. We shall employ a principle of “local exten-
interactions are screened or systems which have no overalvity” which enables one to define thermodynamical quan-
charge[1]. In both these instances, one can use standartities for an interacting system. We shall also show how to
thermodynamics, since effectively there is no long-range in<lassify the degree of nonextensivity of the system by calcu-
teraction. If however, the long-range interactions are notating the scaling behavior of the entropy as a function of
screened, then difficulties are encountered, such as the notptal energy. The motivation for this part of the study comes
existence of the canonical ensemfs or inequivalence of from general relativity. There it is found that the entropy of a
microcanonical and canonical ensembles, and potential ladilack hole is proportional to its area, rather than its volume
of a stable equilibrium configuratioh3,4]. The latter is (i.e., the entropy is nonextensijven this study, we will see
sometimes attributed to negative heat capacitids Nega- that this is a generic property of interacting systems, rather
tive heat capacities are not only present in astrophysical syshan something unique to the black hole.
tems, but have even been observed in fragmenting ni&jei We will also see that generically, a system interacting
and atomic cluster§7]. It is not known how to deal with with a reservoir is not at a particular temperature, but rather
these systems generically, although there have been son®in a probability distribution of temperatures. This will be
attempts to understand them outside of standard thermodyeund by studying a system interacting with a reservoir in the
namics using the Tsallis entrop§] (cf. also Ref.[9]). microcanonical ensemble, i.e., the total energy of the system

A principle motivation for this work is therefore to pro- plus reservoir is fixed. Usually, if one then only looks at the
vide a framework in which to study such systems. A secongystem, it will be in a canonical ensemifixed tempera-
motivation comes from the study of black-hole thermody-ture). When interactions are present, this will not be the case.
namics. There it is found that the black-hole possesses ahhis leads us to introduce a new type of ensemble, which we
entropy which has unusual properties. Here, we will showcall the microlocal ensemble. It is equivalent to the microca-
that these properties are not limited to the black hole, but thatonical ensemble when there are no interactions.
other systems with long-range interactions exhibit related be- Despite the fact that a system is not found in the canonical
havior. We will essentially construct an analog of a blackensemble, we shall see that one can define a quantity we call
hole by adding long-range interactions to a spin-latticethe global temperatureB,. It describes the system as a
model. whole, and is written in terms of the total energy, including

Systems with long-range interactions are often referred tohe interacting terms. There is alsolaral temperaturesa
asnonextensivéecause the entropy and energy do not scalguantity inspired by general relativity. Both types of tem-
with the volume of the system. Normally, if one has a ther-perature are measurable in principle.
modynamical system and one holds the intensive variables In the case of short-range interactions, two systems
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brought into thermal contact will be at the same temperaturecases, but for all strengths of the gravitational interaction. As
Here, we will show that also for interacting systems, thethe strength of the gravitational interaction is increased, the
global temperature of two systems is the same. This justifiesntropy slowly moves to the outer surface of the perfect
to some extent, our use of the term temperature to describf#id. One finds that the total entropy is nonextensive, just
Bo. However, we will see that if one has two separatedike in a black hole, and approaches area-scaling behavior as
systems with the same global temperature, then when theifi€ strength of the gravitational interaction gets stronger.

are brought into contact adiabatically, they will reach a new e also explore gravitating systems in the context of
global temperatured, is therefore not an intensive quantity. N€Wwtonian-type dynamics. This is done to show that the red-
We will also see that the local temperatures of the two sysShifting of temperatures—usually considered to be an effect
tems are, in general, different for each system when in thef'€/ated to the curvature of geometry—also exists in other
mal equilibrium. Such an effect is analogous to the Tolmarfravitational models which are not geometric theories.
relation[10] which exists in curved space. There one finds a 1 N€ paper is organized as follows. In Sec. Il, we introduce
temperature gradient due to the curvature of space-time. EQUT formalism. First, in Sec. Il A, we introduce our assump-
sentially, frequencies are redshifted by curvature. Since thions, which we callocality andlocal extensivityand show
temperature gives the probability distribution of a frequencyinat these assumptions are obeyed by a number of common
spectrum, it is also redshifted. Here, we see that such afyStéms. Next, in Sec. Il B, we use the microcanonical en-
effect does not exist solely in curved space-time, but can als§€mble to show that a system interacting with a reservoir will

be thought of as due to the presence of long-range interadot be fog.nd at a.par.ticular temperature, but rather will be in
tions. a probability distribution of different temperatures. Nonethe-

To make our discussion more concrete, we will examine 4€SS: there is a parameter which behaves very similarly to a
toy model consisting of a lattice of spins in a magnetic fieldtemperature, which we call the global temperature. This is

and interacting via a spin-spin coupling. However, ratherd€fined in Sec. I C. The physical significance of the global
than only nearest neighbor interactions, we will also considefemperature, as well as another parameter called the local

the long-range couplings. We will consider the case of demperature is explored in Secs. II D and Il E. Then, in Sec.
uniform long-range interaction, as well as the case of twd! F» We show that the global temperatures of two systems

different systems interacting via two unequal uniform inter-Prought into contact are equal at equilibriu_m_. The local tem-
actions. Such a situation arises when one considers two laperatures need not be equah effect reminiscent of red-
tice clusters which are of small size. We will also discuss the?Nifting which is usually considered to be the sole domain of
continuum situation, where the interaction can be arbitrang€neral relativity. This allows us to study lattice models
and varies from site to site. where the long-range interaction is not uniform. Next, in

We then consider thermodynamics in the general theor?ec- III_, we ex_plore in some detail a lattice model with long-
of relativity. Comparisons between the lattice model and of @Ng€ interactions. In Sec. 1V, we show that such a system
black hole thermodynamics provide another motivation forc@" & made into an analog of a black hole and has a tem-
this study. Previously, analogs of black holgs,17 (so-  Perature and entropy with many properties reminiscent of
called, acoustic, or solid state black holeave been used to Plack holes. In Sec. V, we show how one can generically
understand black hole radiation. However, they are not usek@lculate the entropy scaling behavior of an interacting sys-
ful for understanding the black hole entropy. Here, we Seéem._Th|s is done for a gravitating perfect fluid in _Sec. VI.
that one can construct a black hole analog that can be used Y& find that the entropy becomes more area scaling as the
study black hole entropy. One finds that the entropy can pgravitational mteractlon. gets stronger. Wg conclude with
nonextensive, just like a real black hole. We find for theSOme general remarks in Sec. VIl and point to some open
analog that there is an infinite redshifting between its locafuéstions. _
temperature and its global temperature which has exactly the !N Appendix B, we look at systems under the influence of
same form as a black hole. At exactly the point where thdVewtonian-type gravity and show that an analog of the Tol-
systems acts like a black hole, a degeneracy in the locd'@n reI;mon exists—Ilocal temperatur_es are .red shifted. In
energy levels forms. This degeneracy is universal, in thé‘PPendix C, we look at more general interactions and go to
sense that it only depends on the form of the interaction. Th&1€ continuum limit.
universality is somewhat reminiscent of the universality of
black hole entropy. II. AFORMALISM FOR SYSTEMS WITH LONG-RANGE

We will also investigate other gravitational systems in INTERACTIONS
general relativity. In particular, we look at the entropy scal-
ing behavior of a gravitating perfect fluid. The motivation for
this comes partly from an earlier study3] where it is Let us consider two interacting systems 1 and 2 with total
shown that the black hole is not the only gravitating systemenergy
which has an area-scaling entropy. A system of shells has an
entropy that scales as the volume when the gravitational in- m=E;+E;+G(E,E»). (1)
teraction is weak, but the entropy becomes area scaling at the
point before a black hole is formed. Here, in looking at theHere, G(E;,E,) is some interaction potentidivhich may
gravitating perfect fluid, we find related behavior. We caninclude self-interacting term&ndm is the total energy14].
look at the entropy scaling behavior not just in limiting In the absence of the interacti@ the energy of each sys-

A. Locality and local extensivity
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tem would beE; andE,. We will refer toE; andE, as the  where the spin-spin coupling is strong enoughthe lattice

local energy Likewise, E=E;+E, is the local energy of spacing is small enoughsuch thatl;, andh; are relatively

both systems. In other wordg can be thought of as the constant over a large region. For simplicity, we will imagine

extensive part of the enerdgr noninteracting payt that the system is composed of two such regions separated
In general, a complicated system will include many suchby a short distance. This then giveg to a constant

systems interacting together, or will be a continuum of sepa- ) 5

rate systems at each point in space. For the purposes of il- m=hye;+hye,—J1€1/2—3,€512— 31 218,,  (4)

lustration, we will consider the simple case where we can

divide the total system into two parts. We will later considerwhere the dynamic variable; IS the _number of up Spins
more complicated setups. minus the number of down spins inside each region, And

We now make two assumptions. and h; are the coupling inside each region and are known

Locality. The state of each system is determined only bycONStants.J; is the coupling between each region, and
its local energyE; and local variables would presumably be smaller than tdg. The number of

1 [ . . . .

Local extensivity Correlations due to the interaction can SIt€S in each region is assumed constant.
be completely described by correlations in the enerfies _Now it is clear that our assumptions and @) hold.

The first assumption is rather generic. The latter assump2"Ce the local energy of each systenkjs-hie;, specifying
tion is true for two systems interacting via a potential whichEi» completely fixes the number of up and down spins in
can be put into the form of Eq1). The essential requirement each region. Furthermore,_onE@ is specified, then the state
for local extensivity is that if the potential introduces corre- ©f System 1 is completely independent of the second system,
lations in microscopic variables , then it will also resultin 18 ONCEE; is specified, the state of system 1 has been
correlations between the local energis. Correlations —determined(macroscopically This state will now not de-
which depend on other thermodynamical quantities can alsB€Nd on what value d&, system 2 happens to have. Differ-
be described using this formalism. The logic behind thes&nt values o, will, of course, mean that the effective mag-
assumptions should become clear in a moment when we coRetic field that system 1 feels will be different, but we have
sider an example, but an important consequence is that if walréady specifiede;, so its macroscopic state will not

write the total entropy of the two systems S, ,E,) then change. Its'microscopic state Wogld not change gither,_since
the interaction of Eq(4) does not introduce any distinction

S(E;,E,)=S,(E;) + Sy(E,), (2)  between different microscopic configurations. Specifyijg
is the same as specifyirg since theh; are known. For each
whereS, is the entropy of each subsystem. This relation issystem, once the spin excessis specified, then all spin
somewhat counterintuitive because when interactions areombinations consistent with this value ef are equally
present one expects there to be correlations between the tviely. Once again, once, is specified for system 1, nothing
systems, and therefore, one does not expect the entropy to Bepends on what happens with system 2 insofar as which
additive. However, the entropy is only additive because westates will be occupied.
have written it in terms of the local energies. The entropy The entropy of each systeS s just given by the number
does not scale linearly with the total enengyand is there-  of independent ways of arranging the spisiice each ar-
fore nonextensive. Essentially, for fixedthere are correla- rangement is equiprobable.e.,
tions which exist becausg; is not independent of,, but
once you specifyfE; andE, you have completely specified S(E)=— Ni+e In Nite Ni—e In Ni—e (5)
|
each subsystem. 2 2N; 2 2N;
Equation(2) follows from our assumptions because if sys- ) ,

tems 1 and 2 are only determined by local variables, ther] here are, of.course, still correlations be_twegn the two
specifying local variables, such & andE, determines the SyStems—for fixedm, the number of up spins in system
number of possible states of each system. Furthermore, sine'Vill completely determine the number of up spins in sys-
the correlations between the two systems are only correld®Mm 1. _ .
tions between values &, andE,, then onceE; andE, are We will see that these assumptions also hold in the con-

specified there are no additional correlations which would€Xt of general relativity, but for the moment, let us return to
destroy the additivity of the entropy as given by Ea). the generic case and define the temperature. One has to be
To make this point clear, let us illustrate it with an ex- careful because as we will see the canonical ensemble does

ample; consider a lattice & spins with total energy not exist.

B. Multiple temperatures and the microlocal ensemble

The usual derivation of the canonical ensemble follows
from considering a large reservoiR in contact with a
where theo; represent the spin at each lattice siteith smaller systen®. One fixes the total energy of the combined
values* 1) and theh; are magnetic field value®r internal  system(hence, one is operating in the microcanonical en-
energy levels The J;, are spin-spin coupling constants. In semblg, but we let energy flow betweeR andS. One then
the standard Ising model, one takes the sum such(jlkat finds that the probability distribution of energies &fis in-
are pairs of nearest neighbors. Here, we consider the casiependent of the details of the reservoir. The distribution

m=§j: hiUJ_“z:k) ij(TJ'O'k, (3)
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depends on a quantity which is defined as the temperaturgystem into a reservoir and smaller system is purely formal,

and this defines the canonical ensemble. Here, we essentiallye will see thatdSg(Es)/JEs=dSir(E)/JE. This comes

repeat the standard derivation, except we have the interactidrom symmetry considerations. Another special case is when

term given in Eq(1). We will find that the distribution looks the reservoir has no long-range interactions. Both these cases

very different. One can think of the system as being in awill be discussed in Appendix A. In general, one can relate

probability distribution of different canonical ensembles. B¢ to dSg(Es)/JEs using the methods we will develop in
Although we could work in the microcanonical distribu- Sec. Il F.

tion from the very start, it will prove useful to define a new  Using the definition of Eq(8), we find

ensemble which we will call thenicrolocal ensembleRather

than fixing the total energyn, we shall fix the total local Q¢(Eg)eSr(®-EsfedE,

energyE=E+ Es. The motivation for this should become P(ESE)dEs= Ze ' ©)

clear as we proceed. In the case when the interactiaa

zero, the microlocal ensemble and the microcanonical enpne can see from the above expression, that at fiettie
semble are clearly identical. probability distribution ofS looks independent of the nature

Let us therefore consider two system with fixed local en-4f the reservoir, since the probability for the system to be at
ergy E, and imagine thaR is very large, and constitutes a 5 certain energgs is

reservoir, i.e.Es<Ey. We then allow energy to flow be-

tweenS andR until the systems reach equilibrium. At equi- P(E4E)dEsx Qg(Eg)e EsPedEs. (10)
librium, and for large systems, one is most likely to find the
system in a state which maximizes the entropy. which looks like the ordinary canonical ensemble. We must

The probability thats has energf for a fixedE is given  yeep in mind, however, that the temperature is defined in
by counting the number of possible states of the systenms of the reservoir. not the system.

when S has local energjEs and R has local energyfer Now, however, there is a key difference. We have worked
=E—Eg. The probability thatS has energfs for a fixedE i the microlocal ensemble, but in the microcanonical en-
is a conditional probability and is denoted pyE|E), i.e.,  semble, it is notE that is held fixed, but rathen. If there

it is the probability of having energf s conditional on the  \yere no interactions, then this would mean tEats also
total energy beinge. We can write fixed (if G=0 then, in factm=E). Then, sinceE would be
constant, so woul&Er(E). We would therefore recover the

p(E4E)d ES:QS(ES)QR(ER)O'ES fact thatS is in the usual canonical ensemble. However, for
Ze G(Es,ER)#0, E need not be constant. For example, if
= O (Eq)eSRERJE, /Z¢, (6) G(Es,Ex) were quadratic irE, then at fixed total energm,

the system can be in one of two valueskofFor more com-
where Qg(Eg) and Qr(Ex) are the number of states ¢f  plicated potentialsmany values of the local energy &e

and R with energyEg andEy . Zg is the partition function ~possible even though both andE are fixed. Therefore, for
obtained by counting all states with a fix&d an isolated system, one should not hBlfixed, but rathem

as this is the conserved quantity, while the local endtgf
an isolated system can change.

In order to calculate the probability distribution of the
system in the microcanonical ensemble, we canthedaw
We can now expandSi(Er) around E to give Si(E) of total probability
—Es9Sz(E)/JE. We then define the inverse temperatgee
in the usual manner in terms of the local extensive entropy

ISr(Ex) ®

JER To this end, we will use the fact that at fixex the prob-
ability that the system has local energyis given by

ZE= f dEsﬂs(Es)eSR(ER). (7)
E

p(y)=§ p(y[X)p(x). (11)

Be

We shall refer tg3g as thelocal temperatureThe motivation
for using this term(as with many of the terms we are intro-
ducing comes from general relativity.

Note that the temperature of the system is defined in terms
of the derivative of thaeservoir’s entropyIn the noninter- where
acting case, no issues arise from this definition: if two sys-
tems are in thermal contact in the microcanonical ensemble, Zm:f dEQ o(Eg)eSrER), (13
then dS¢(Es)/ dEs=dSkr(E)/JE. When long-range interac- m
tions are present, this is not necessarily true—a point which
will be discussed in Sec. Il F. One therefore should keep in.e., Z,, is the total number of states at fixed total enengy
mind that the temperature is a property of a reservoir—itClearly, the probability that the local energyiss just given
gives the distribution associated with a smaller system irby the total number of states which have local eneky
contact with it. In the case where the division ofsengle  divided by the total number of stat@s, .

P(E)=Ze/Zp, (12
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We therefore find, that in the microcanonical ensemble, dSk(m)
the probability distribution ofS in contact with a large res- °= " m
ervoir is given by
_JE 16
= omPE- (16)

= ~ErB
P(Es)dEs ; Qs(Es)Qr(B)erEdEs/Zn, (14) Note that this global temperature does not depené.one

have the important relationship

where the sum is taken over &lconsistent with total energy BeEs= BoEo - (17)
m. We see that one does not recover the usual thermal distri-

bution. Rather, one has a probability distribution of thermal
distributions. There is also no decoupling of the probability
distribution of the system from the reservoir. In other words,
one does not obtain a simple probability distribution like Eq.
(10) which does not depend on the reservoir.

Although the microcanonical distribution is appropriate
for an isolated system, there may be situations where th
microlocal distribution is also appropriate. Such situations
include cases where superselection rules single out a particuD. An example: Physical significance of global quantitie€,
lar E (for example, charge conservation or angular momen- and B,
tum conservation may not allow transitions from one value e do not have a single thermal distribution, but rather a
of E to anothey. One also may have cases where there is &rohability distribution of canonical ensembles, one for each
large gap between various valuesEbo that once the sys- accessibleE. However, the quantity,, is the same for each
tem takes on a particular value Efit is unlikely to change, epsemble. In Sec. I F, we will see that, does possess a
as this would require a large random fluctuation. In sucheycial quality of temperature—namely, two systems in equi-
cases, a smaller system in contact with a large one woulgyium will have the sameB,. Here, we point out some

behave as if it were in a canonical ensemble. other physical properties that the global quantifigsandE,
Finally, we note that the local temperature, as we have, g e.

defined it, is a function oE. It is for this reason that we have Let us examine the physical significanceE®f when we

explicitly put in this dependence by writinge . There will |55k at the spin model of Eq4). Let us imagine that we
be different “temperatures” dependent on what valueBof e a homogeneous system, so thath, and J;=J,

the entire system is found in. =J,,, and we can therefore drop the subscript. Let us also
work in the microlocal ensemble with fixed for the time
being as we simply want to understand the significande,of
andp, . Let us consider system 1 to be a single gpie will

As we saw in the preceding section, a small system interhenceforth treat system 1 as the small sysfeamd system 2
acting with a reservoir behaves as if it is at a number ofas the reservoiiR). This single spin acts like a probe, and
different local temperature@g. Equation(14) gives the can be thought of as a thermometer. Then inserting(&q.
probability distribution in terms of this local temperature andinto Eq. (9), one can verify that the probability of the ther-
the local energ¥s. However, the local energy is not a con- mometer being spin u@nd hence, having local energy is
served quantity, and it is not the energy that an observer wilequal to (N+€)/2N which is exactly as one expects, since
ascribe toS, since it does not contain the interacting term.this is just the fraction of spins which are up in the entire
We therefore define the conserved energy of a system intesystem(here,N is the total number of lattice sitedHowever,
acting with another systemR as E,=m(Egs,Eg) the true energy levels of the spin are noh as they would
—m(0,E)=Eg(dm/JEg) . This is the change in the con- be if the system was noninteracting. One must also add the
served energy af, if one only makes changes to its energy field due to all the spins in system (2e., the rest of the
levels. Clearly,E, is also a function ofE but we will not  system, not including the probe spiThis means that the
write this explicitly. We will now show thaE, gives the single spin actually feels a magnetic field fof-Je. This is
energy levels ofSin the presence dR. Using the definition exactly equal tcE,. Therefore, someone measuring the en-

E, can be thought of as the effective energy, i.e., it is the
energy of the system in the presence of the reseriinir
general, it is the energy of the system in the presence of its
interaction with another systemB, can be thought of as the
closest thing one has to a physical temperature. If this is not
yet clear from the above definitions, it should become clearer
\évhen we examine the example below.

C. Global temperature and conserved energy

above, we can rewrite Eql4) as ergy levels of the thermometer would conclude that the ther-
mometer had energy levells, and that based on its probabil-
= —EoBo(m) ity distribution, it is in a thermal distribution at temperature
P(Es)dEs ; Qs(E9r(E)e dEs/Zm, Bo - This is exactly what is given by E¢15). 3, is, there-

(15  fore, the physically significant temperature from the point of
view of this type of a determination of temperature. Note,
however, that because of the self-interactions in the system,

where the global temperature is defined as m#NE,, i.e., one cannot find the total energy by adding up
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all the locally conserved energies of each spin. This is jushand, in the Ising model, where the potential is due to nearest
another manifestation of the nonextensivity of the system. neighbor interactions, one does not know the local potential,
since it is random. Therefore, in the long-range case, one can

E. Physical significance of the local quantitie€ and B¢ liberate all the long-range interaction energy by removing a
spin. In the Ising model, much of the interaction energy is

The temperature of the probe in the above example Wagpntained in thermal fluctuations and all of it cannot be lib-
Bo, but we will now show how to use a probe to measure thesrated in such a manner.

local temperaturg8. From the point of view of the formal-

ism, the local temperature is a useful quantity. Itis clearly an g ynequal local temperatures at equilibrium, equal global
intensive quantity, as can be seen from E). One the other temperature

hand, the global temperature is not an intensive quantity. . . .
Doubling the size of the system along with the total energy It is a standard result that for two noninteracting systems,

will result in a change in the temperature, as can be seewe temperatures will be equal when they are brought into

. . oo . . equilibrium. We now extend these results by showing that
simply from its definition(we will see encounter this more the local temperature of two systems in thermal contact, need
explicitly in Sec. Il B. We will also find that the local tem- '

. o ) ot be equal, while each system'’s global temperature will be
perature has a very strong physical significance in gener

. . ' qual. This in many respects justifies callifg a tempera-
relativity, where it is the physical temperature measurable by, o ‘even though it is not the temperature in the usual sense,
free-falling observers. One would therefore like to know hoWgjn e the microcanonical ensemble does not lead to a canoni-
to measure it in other theories. It can be measured using the;| ansemble.

follqwing m_ethod. we again_use the _exampl_e from the pre-\ve allow the two subsystems to exchange energy but
ceding section of a single spin probe interacting with a Iarge[(eep the total energm fixed, while the local energ§ need

system and identical to it. _ not be fixed. At equilibrium, the system will be found in the
We use the probe to measure the temperature by firgh ot hrobable configuration, i.e., the entropy will be an ex-
slowly and adiabatically drawing the probe away from theg.on m 5o that the system is in the macroscopic state with
rgst of the spins until it no longer interacts with the systeMy,o ayimum number of microstates. We can then find the
(i.e.,J1,=0). Its energy Ievels then becomh' From Ed.  oyiremum by varyings; andE, at fixedm. The entropy of
(17), one sees that this spin then acts like a thermometet(,v0 systems is given by Eq2), and we now find the extre-

measuring the local temperatug:, i.g., in an adiabatic mum to give the most probable configuration
change the state of the system remains constant and its av-

erage spin is stile/N. However, the energy levels we would 1 S,

ascribe to the spin are now different. We would no longer say ds:(f) dEﬁ(f) dE;

that the energy levels are given By since the magnetic Ym 2lm

field is now zero and theJ term no longer contributes. As a 39S, JE;  9S,

result, the spin acts as if it is in a thermal bath of temperature = [f “E. f} dE,=0. (18)
1 9E2 2l

Be and has energy levelsh.

One can use an almost identical method which reminds
one of the measurement made by a freely falling observer iysing the definition of local temperature of E§), we find
general relativity. In general relativity, the local temperature
is in fact the physical temperature as measured by an indi-
vidual who is freely falling. The global temperatysg is the _ ('9_52)
temperature measured by an individual at infinity. With a B2=—h JEq) |
spin system, there is no distinction between different observ-
ers. However, an analogy with general relativity motivates dG(Eyq,E3)
the following method. One slowlyadiabatically applies a _B1[1+( = ) }
local magnetic field=Je to the probe spin. This is exactly "
the magnetic field which cancels the magnetic field of the
surrounding spins which are acting on the probe. The prob#here g; is the local temperature of each system, and the
spin then has energy levels afh and since its state has not dependence ok is implied. One can also easily verify that
changed, itis as if it is in a heat bath of temperatBige One  the global temperatures of each system are equal, just by
can think of the applied field as being analogous to the graviusing Eq.(19) and the definition of3,. This to an extent
tational “force” which gets canceled when one goes into freejustifies the termtemperature Note, however, that if we
fall. move two systems together which are both initially at the

It is worth noting that there is a significant difference same global temperatur,, then their new equilibrium
between the method for measuring the local temperature itemperature can be at a different global tempera8jreThis
the case we have described and the case where the interag-due to the addition of new coupling terms in the total
tions are short rangén the Ising model sgy For example, energy. The global temperature is therefore not an intensive
when we remove a single spin from this system, we arejuantity. We will see this in the example below.
moving it in a known potential, since the interaction is  Using the two coupled Ising models of Ed), we would
mostly due to the entire system as a whole. On the otheget a temperature difference of

(19
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1—J.,6,/hy,—Je,/h, gave the entropy of the two systems when one had eriergy
B2=PB17— = - (200 and the otheE,. However, if the two systems are in contact,
1-J106,/h—J.€1 /0, . . . S
the energies will fluctuate until the system is in its most
One can solve foe; ande, as a function of the total spin Probable configuration. We can therefore write the average
excesse by explicitly calculating the temperature using Eq. €ntropy of the two systems as
(5) and equating it with the equation above. Solving these
two equations fore,(ey), will th_en allow us to give an ex- S(E)=S(E;,E,), (27)
pression for the temperature difference.

9S, 9S, 1—Jpe,lhy—Jye,lh, where it is understood that this is the average entropy of the
E; (9_Ez: 1=3,,6,7h,—J,6,7h; (21)  combined system.

Using Eq.(5) for the entropy of theth system gives Ill. AN EXAMPLE: THE LONG-RANGE LATTICE MODEL
S 1 Ni—¢ In order to better understand the points raised in the pre-
’9_Ei:2_hi|n N;+e " (221 vious sections, it will be useful to work out a very simple
example. We will consider a single system of spins interact-
This gives the following equation: ing via a long-range potential which is constant. This model

. is simpler than the one of E@4), and has total energy
hi(ha—J1281 = J2€7)
: m=he—J€/2, (28)
(23)

2
h3(hy—J18,-J1€9)

Ni—e;
N,+e;

N,—e,
N,+ e,

where we have simply dropped the subscripts from @&j.
and have got rid of the second cluster.

We essentially work in the microcanonical ensemble and
use the formalism we have introduced. There are other long-
rlr%lnge lattice models which attempt to solve similar interac-
Yions such as the Curie-Weiss model, where the interaction is
made to scale inversely to the number of lattice sites. The
dependence of the interaction on the size of the system is
fixed. But sinceE, changes wheid;, becomes significant problematic, b.Ut it. ensures t.hat the thermodynamic limit ex-

) 0 12 ' ists. A generalization of this is the Kac mod&b] which has

one cannot keep, constant. By recalculating,, one can ; X ith al ff b ¢
therefore calculate the new global temperature. We see therar! Interaction with an exponential cutoft. Here, because o
: our formalism, there is no need to introduce such a cutoff.

fore.that the global temperature Is not an intensive quantitypy o e e explore is likewise related to the mean field
Finally, one can consider what happens when one is in th

grand-canonical ensemble, i.e., we allow the number of par%pproxmatlon of the Ising model, although in the mean field

4 ; X approximation, it is as if one is working in the microlocal
ticles N.l andN, to change, wh|le keepmg the total number ensemble, rather than the microcanonical ensemble as we do
of particlesN and volumeV fixed. In this case, one can

' . o here. In other words, in the mean field approximation, one
def!ne the local chemical potential in the same way as W&vill not see the effects of having multiple values ©f An-
defined the local temperature

other model which has been extensively studied are those

which can be solved graphically feg(e,). This can then be
substituted back into Eq20). We shall not do so here.
Now if initially these two systemsor cluster$, are far
apart, and at equal global temperature, then when pushi
them together one cannot do so both adiabatically and is
thermally (constant global temperatyras one can do in the
noninteracting case. This can be seen from(Ed@). Moving
the systems together adiabatically requires keeig,

IS with 1/r potentials(see Ref[16] for a recent review
n=- (W) , (29 In Eq. (28) the local energy i€=he, and for fixedm
E.V there are two possible values of the local energy which can
and one finds that be obtained by solving Eq28) for e
M1B1= 22 (25

h
e.(m)=3[1xk(m], (29)
This leads one to see that the local chemical potentials of
two systems will also not be equal, and that the ratio between L
the two chemical potentials is the inverse of Egg). One  Wherekis given by
can likewise define a global chemical potential

am k=1/1 2Jm (30
Mo="E HE- (26) h?2

Finally, the preceding discussion allows us to write thelt is these two values o which will give us the two differ-
average entropy of two systems. Previously, we wrote thent local temperatures. From Eq46) and (28), we get the
entropy of two systems &(E,,E,), as in Eq.(2), i.e.,, we relationship between the global and local temperatures
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B 1 Je. B Q. cosiB.h) 35
B()=Bo| 1= == P(e)= 6 Coship M+, cosig.h) o2
2mJ where() . is the number of states of the total system with
=+Bo\/1- e (3D spin exces®. . It is given by
N!
and likewise, usinde,=EJm/JE, we get Qi:(N—i—et I(N—ei)I ' (36
E.=(1-Je. /h)he. 2 2
= Fk(m)E. (32) and can be approximated by Stirling’s equation. The total
probability of a spin being up or down is then given by Eq.
We will henceforth uses.. to represent the two local tem- (19),
peratures. It is also_ worth noting that E@2) for thg con- (O .etBihy( eth-h
served energ¥,, gives the energy levels of a spin in the (xh)= i . (37
; A : P 20 h)+20 h
presence of the effective magnetic field due to the applied - coshB_h) + cosh{B.h)

field h and all the other spins of the system. In other words
E is the raw energy levelsh in the absence of the long-
range interactions, whil&, gives the energy levels in the
presence of interactions.

One can also arrive at Eq31) using the following

There is nothing special about the particular spin we are
using as a probe, and so the average orientapn)
—p(—h) should be equal to the average magnetization of
the entire systere/N. We therefore have

method which is highly illustrative. Consider the example in Q_sinh(B_h)+Q, sinh 8, h)
the preceding section of two spin systems with a local tem- e(By)=N— - * A (39
perature difference given by E(R0). Now imagine that sys- Q_cosh{B_h)+Q . cosiB.h)

tem 2 is being used as a thermometer to measure the tem—hiI in the microlocal ensembldixed we hav
perature of system 1, i.e., system 2 has no Iong-rangléy € € microlocal ense ede.), we have
interactions and minimal energy,=J,,=0. In this case, e —Ntan h 39
Finally, we note that one finds the usual phase transitions
_ B1 33 at B,=J/2. Here, however, the phase transition is real, not
B2= 1-J.e,/hy" like the false phase transition that can occur in the mean field
approximation. It therefore exists in one dimension. It will

This is precisely the same relation as K1) giving the  also have the property that there will be different average
relationship between the local and global temperatures. weepending on which microlocal ensemble the system is in.
can conclude from this that a spin which does not have long-
range interactions with the rest of the system will “feel” the IV. A BLACK HOLE ANALOG
global temperature—its local temperature will be the sys-
tem’s global temperature. On the other hand, a system which
is identical to the rest of the system will obviously have the In general relativity, one encounters a number of interest-
same local temperature as the rest of the system. ing thermodynamical effects. Perhaps the most well known
However, as we know this temperature depends on whicks the Tolman relatiof10]. One finds, that in curved space,
branch of local energy the system is in, i.e., whether it is inthe temperature, as measured by local free-falling observers
the statee, or e_. If one were to look at a single spin in varies from point to point. This is usually interpreted as be-
order to determine the temperature, one would not find théng due to the redshifting of frequencies due to the curvature
spin in a thermal state. Rather, the spin would be in a distriof space-time. We have already seen that for other systems
bution given by Eq(15), i.e., it is in a distribution of two with long-range interactions, one has a variation of the local
possible canonical ensembles, with two local temperaturetemperature. The results are closely related, and here we will
B corresponding to spin excessese&f. The conditional see that they can have exactly the same form. This gives a
probability of a single spin being up, given a spin excess ofew interpretation to the Tolman relation; it is not the sole
eithere. is given by Eq.(9), i.e., the probability of it being domain of general relativity as is usually believed, but in-

Lattice model as a black hole analog

spin up having local enerdly is stead arises in other theories with long-range interactions.
However, what makes the variation of local temperature spe-

Bh cial in general relativity, is the physical meaning it has. We
p(hles)= (34  saw that in the lattice model, the local temperature was not a

ef=Nye pal’ constant throughout the systenjust as in general

relativity)—however, the local temperature of the lattice did
The probability of the system being in the stateore_is  not have the same physical interpretation as it does in gen-
given by Eq.(12) eral relativity (where it is the actual temperature as far as
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free-falling observers are concerpeth the lattice model, netic field. In other words, both the energy levels of a single
the local temperature was only the physical temperature ipin are zero. Therefore, sing#== B,E, is finite for finite
we applied a local magnetic field to cancel the effective mag8,, we must have an infinite local temperature. Also, since
netic field due to the rest of the system. This is closely reindividual spins see no net magnetic field, there is no pre-
lated, however, since the applied magnetic field is very simiferred spin direction, and one finds=0. This solution is
lar to the effect of free fall in general relativity. therefore the solution with maximal entropy.

Another important thermodynamical phenomenon in gen- Case(2), with zero global temperature, can be thought of
eral relativity is the black hole entropy. This is often viewed @S being analogous to the extremal black hdle., the

as the key to understanding quantum gravity, since angharged black hole solution with zero temperatuta this

theory of quantum gravity should presumably predict thec@S€, We can have a finite local temperature. This again

correct value of the black hole entropy. It is therefore impor-(iomelS Irr](.)m the r_elatiorBE=i80Eo Zgl:j the fact that,
tant to understand what aspects of the black hole entropy are _I;h n I’IS\/ i(t:atsieﬁ IIS nr1]0|re 0{} essnarthl rra|r|¥t resting bropert
specifically related to gravity, and what aspects arise in othey ¢ dravitational analog has another intereésting property.
theories. We are therefore motivated to explore the similari-In gravity, one requires that the radius of the plack hole IS at
ties of oﬁr lattice model, with the types of effects one finds inR=2Gm which is the so-called Schwarzschild radius, one

| relativit ’ yP cannot haveR<2Gm. The same is true here. There is no
general refafivity. . value of e which would allow h?<2Jm. The black hole

Inspecting Eq(31) for the lattice model, one cannot help

AT . . analog solution occurs at the maximum of energy
but be struck by its similarity with the Tolman relation from _ 2/ which is exactly the Schwarzschild radius. The limit
general relativity. Indeed, defining=h? and putting the

_ ) - ! h?=2Jm therefore corresponds to a horizon in a very real
couplingJ=G, whereG is the gravitational coupling con-

sense.
stant, we see that E¢31) becomes There is also an analog of the “white-hole” solution,
which occurs whenJ is taken to be negative. In general
2Gm L. . . . ; o .
Bei=FBo\/1— —. (40)  relativity, the white hole is a solution to Einstein’s equations,
= r

however, it is unphysical as it is unstable, and entropically
forbidden, requiring highly special intial conditions. How-
The positive solution is exactly the Tolman relation for theever, with the spin model, such a solution is completely
redshifting of temperature in the Schwarzschild geometry—physical(and also more stablelt corresponds to a minimum
the Schwarzschild geometry being the space-time of an uref energym.
charged nonrotating black hole or spherically symmetric star. The case ok_ reminds one of the situation interior to a
In Appendix B, we will see that one obtains similar redshift- black hole, since in this case, the local temperature is nega-
ing effects in a theory with a Newtonian potential. tive as can be seen from E@O). Likewise, inside the black
Let us now show that our Ising model can be thought ofnole, the light cone is tilted over, in such a way that energies
as a black hole analog. For-2Gm, Eq. (40) behaves like which are positive outside the hole, are negative inside. In
the exterior Schwarzschild solutidthe solution outside of the black hole analog case, the negative local temperature
the black holg¢ As we decreaseg, the local temperature be- can be understood from E¢82) by noting that positive con-
comes hotter and hottéfor fixed global temperatuye served energieg, correspond to negative local energies. In
Settingr =2Gm gives the black hole analo@r perhaps other words, a spin is more likely to be pointing up with
more appropriately, the point in space where an observesnergyh, even though this corresponds to a greater local
would be on the horizon In this case, there is an infinite energy (it instead corresponds to a smaller conserved en-
“redshifting” between the global temperature and the localergy).
temperature as can be seen from &d). This “black hole” We now turn our attention to the entropy of these solu-
solution is not only special because of the divergence in théons. This is of interest because the black hole entropy is
redshift—it is also the point where the two solutioms and  usually considered to have some unique properties.
e_ coincide. There is therefore only one local temperature. (1) The black-hole’s entropy is proportional to its area and
One can therefore see that it is only the black hole analogot its volume. In the case of three spatial dimensions, this
solution which is thermal. All other solutions do not give a means that the black hole entropy is proportional to the
thermal distribution. The black hole solution is also specialsquare of its total energgsince the black hole radius is at
in that there is a degeneracy in the energy levels—a poingm).
which will become important when we discuss the system’s  (2) The black-hole entropy is universal—the constant of
entropy. proportionality between the entropy and the area is the same
There are two interesting cases to consid#):the case regardless of the past history of the black hole. This means
where the global temperatug, is finite and(2) where the  that no matter what type of initial matter formed the black
global temperature is zero. hole, its final entropy will only depend on the total energy of
In case(1), if the global temperature is finite, then at the the black hole(or other conserved quantities in the case of
point thatr =2Gm the local temperature diverges. This is charged and rotating black hojes
explained in the spin model by inspecting £§2) and not- (3) Before a system forms a black hole, its gravitational
ing that the pointh?=2Jm (the analog of the black hole entropy is zero, while the black hole entrofwhich is enor-
horizon corresponds thv=Je. This is exactly the poinE, = moug appears suddenly, when the system forms a black
=0 and therefore an individual spin sees no effective maghole. The system may have some material entropy before it
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forms the black hole, but this is negligible compared to the If one uses the entropy as given by Ef) then the en-

sudden increase in entropy it gets when it forms a black holeropy will scale as bottN ande. If one uses the definition of

The particular spin model under discussion does not possessitropy discussed above, then the entropy will scale With

properties which are identical to the black hole. However, itOn the other hand, the scaling of the total energy is given by

does possess characteristics similar to the three mentioné&tly. (41) so a general system will not have an entropy which

above. scales likem. For the case of the black hole solution, i.e.,
To aid in this discussion, it is worthwhile to add the con- h?=2Jm, the total energy is

stant terms back into our expression for the total enengf

the spin model. From Ed3) one can put back the constants, J(e?~N)

so that instead of Eq28), one gets m= 2 ' 42

which has a completely nonextensive paxaling likee?) as
well as the extensive pafscaling likeN).

Here, the entropy, while exhibiting nonextensivity as a
whereN is the total number of spins. function of total energy, does not scale the same way as a

Now the entropy one finds will depend on what one speciblack hole(i.e., Sxm?). However, one can imagine easily
fies about the system. Consider the case when one knows ré@nstructing an interaction which has an entropy which has
only m, but also the energl, of every spin. In this case, the the same dependence onas the black hole. For example,
entropy of the system is zero, since knowing the endéigy by having an interaction of the forrmec JE. Then, for a
of each spin is the same as knowing the spin itself, so on&cally extensive systeri.e., SxE) such as the spin models
has complete knowledge of the system. However, when th&e have been considering, one will find the same entropy
system becomes a black hole analoggat 2Jm, the energy ~ scaling behavior as a black hole.
levels E, of each spin become doubly degenerate and the We will discuss in more detail in Sec. V how one can
system suddenly acquires an entropy of log 2 per spin. Thigerive the scaling relations for the entropy based on the con-
then is similar to property3) of a black hole. Such a prop- siderations introduced here.
erty also exists if one does not know the energy of each spin, Finally, we note that one can arrange the phase transition
but instead knows the total local energy of the system, i.e$O that it puts the system at=0 and one finds a second-
one knows whether the system is in #e state or in thee_ order phase transition into the black hole analog solution.
state. When the system forms the black hole analog, thesEhis is in contrast to the black hole case, where the jump in
two different states merge, and one acquires an addition&ntropy suggests a first-order phase transition. However, if
(although negligible entropy of log 2. However, one inter- One looks at the entropy given that one knows the value of
esting property of this entropy log 2 is that it is only a func- Eo for each spin, then the analog does indeed have a discon-
tion of the form of the interaction, and not of the particular tinuity in entropy.
system. In this system, we have a factor of log 2 because the
potential is quadratic, and there are two possible local ener- V. NONEXTENSIVE SCALING LAWS
gieshe. for fixed total energyn. It is tempting to regard this

as a type of universality, similar to proper9) of the black onger be purely extensive. Here, we will show how to quan-

hole. The factor of log 2 comes because of the form of th ify the degree of nonextensivity for particular systems. The
interaction, and has nothing to do with the particular system, » .~ 9 -NSvity P Y. S
|‘na|n idea is to use the principle of local extensivity which is

just as the black hole entropy comes from the gravitational iven as Eq(2). In other words, in terms of the local ener
interaction and has nothing to do with the particular system% h qt<). o v, Thi b ergy
For a general potential, there will Imgpossible local energies the entropy Is an extensive quantity. This can be written as
at fixed energy and one might regard logs being the en- S(NE)=\S(E) (43)
tropy associated with the interaction. One can also make the
degeneracy arbitrarily large, by considering higher levelin terms of the total energy, the system will not be exten-
spins, rather than just the two level systems we have beegve. Here, we will work in the microlocal ensemble—in the
considering here. end, one must sum over afl consistent withm. We will

Note that the degeneracy B, which occurs in the spin  therefore in this section writ8 as a function of to remind
model also has a counterpart in the black hole. There, ongyrselves of this. In the case of densities, it is understood that
also finds that the conserved energy is zero on the horizon. 18s a function ofp.
some sense, this is what enables one to “pack” a large we now use a second ingredient, namely, the Gibbs-
amount of entropy at no energy cost, close to the horizon. pynem relatior{17]

Finally, one can ask about the nonextensive properties of
the entropy. The entropy is nonextensive in the sense that it s=B(p+p)—un (44)
does not scale proportionally with the total enengy In
other words, the entropy is proportional to the local endtgy to relate the various thermodynamical quantities to each
(andN), but because the total energydoes not scale lin- other. Heres, p, n are the entropy density, energy density,
early with E andN, the entropy will not be a linear function and particle number density arid x and p are the local
of the total energy. temperature, chemical potential, and pressure.

m=he?—Je?/2—IN/2, (41)

As discussed in Sec. IV, the scaling of the entropy will no
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It will prove easier(although not necessaryto multiply One can show that the Smarr relation quantifies the non-
Eq. (44) by a tiny volume elemen¥ to get extensive nature of the interaction. Differentiating the Smarr
relation Eq.(50) and applying the first lavdm=T,dS, one
E=TS(E)—pV+uN. (49 obtains(in terms of a constany)
The standard derivation of the Gibbs-Duhem relation follows S=ym?, (51)
from the first law and the principle of local extensivity. One
has so that the entropy scales notrmasas it would in the nonin-
teracting case, but as’. We had such a term in our long-
dE=TdS-pdV—pudN. (46) range lattice model. The black hole’s radius i$Rat 2m and

Then, analogously to Eq43), one has so in terms of the black hole aréa one obtains

N(AE)=AN(E), 4 _r
(AE)=AN(E) (47) S= 1A (52)

and also that in a small volume, the quantifiep, andu are . )

intensive, i.e., they do not change with One can then One likewise gets

integrate the first law to obtain the Gibbs-Duhem relation. T,=(2ym) 1 (53)
This relation is known as an Euler relation of homogeneity 1. © Y ’

Quan.tities which scale lika? are Euler relations of homo- which is the correct expressidup to a constant of propor-
geneitya. tionality) for the Bekenstein-Hawking temperature.

We can now express the local eneryas a function of Finally, it is worthwhile to explore some additional rela-
total energym, and also use the expressions, Ed$) and tionships one gets for extensive systems. Taking the deriva-

(25), to express the local temperature and chemical potentialye of the Gibbs-Duhem relation E@5), and applying the
in terms of their global quantitie8, andu, . Or, in the case first law Eq.(46), gives

of a continuum system, one can use E({84), (C7), and
(C9) We would thus have all local quantities expressed in dTS=Vdp—Ndgy, (54)
terms of global ones. o ) ) ]

In the continuum case, one then gets for the entropy derhich yields the following two relationships:

sity (aT) v (aT N -
g ), s \oul, S

p L S
S(P):Boa_r-n(p_p)_:“oﬁoni (48)

These relationships between intensive and extensive vari-

which can then be integrated to give the total entropy inables only hold for extensive systems, although they hold
locally for nonextensive systems.

terms of global quantities. Just as we ug&egd we here use
the conserved energy denspty. The equation fop(x) will
depend on the the potential. In the following section, we will VI ENTROPY SCALING BEHAVIOR IN GENERAL
calculate this quantity for a gravitating perfect fluid, and we RELATIVITY

will see that the entropy will not scale like the volume of the  gganeral relativity is another theory in which our assump-
system, but rather, approaches area scaling behavior as tfi§ns of locality and local-extensivity hold. What's more,
system becomes more stron_gly interacting. _ guantities like the local temperature have a very real physical
As a general rule, one will obtai(m,3,). From this,  heaning—the local temperature is the physical temperature
one can then calculat®(Am, B,) in order to determine the measured by an observer in free fall. We will first discuss
sfcahng behavior of the entropy. For general interactions, ongow our two assumptions hold in general relativity. Then, we
find that S(\m, B,) # AS(m, B,) . Instead, for homogeneous || discuss the entropic scaling relations for the perfect
potentials, one finds fluid. The principle motivation for the latter study comes
_ from Ref. [13], where it us shown that the entropy of a
S(Am, Bo) =\*S(m, o), (49 spherically symmetric materidapproximated as a cFi)gnser

and the exponerd then quantifies the degree of nonexten-Packed set of shellhias an entropy which is area scaling at
sivity of the system. the point before it forms a black hole. It is therefore seen that

Perhaps the most famous example of this, is the case of §€ aréa-scaling property of entropy is not unique to the
black hole in three spatial dimensions, where, one finds thB/ack hole. This suggests that this property arises from the
so-called Smarr relatiofl8] long-range interactions of gravity, and is not solely due to the

horizon. Here, we will see similar behavior, however, be-
S=B,m/2, (50) cause we can solve the equations exactly, we can trace the
entropy scaling behavior at all values of the gravitational
which is an Euler relation of homogeneity 2 in contrast to thecoupling constant.
noninteracting case dd= BE which is an Euler relation of Let us first see how our two assumptions hold in general
homogeneity 1. relativity. A review of thermodynamics in curved space can
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0.1 0.2 0.3 0.4

be found in Ref[19]. Let us first consider the case where
there is no gravitational interactions. The thermodynamical
quantities,p, n, T, u, p, ands are taken to be the quantities 0.5
measured in the rest frame of the substance. Let us nov
consider the case where we have gravitational interactions
In this case, we can go into the proper rest frame of the0.
material and consider an observer who is released into fret
fall. By the principle of equivalence, this observer would
measure the same quantitiesn, T, u, p, ands (these are
what we called the local variablesAn equation like the
Gibbs-Duhem relation of Eq44) is a scalar equation. Since ©-
it holds in the nongravitating case, it also holds for the local
free-falling observer. Furthermore, since it is a scalar equa-
tion, it holds for all observers. FIG. 1. y vs m/R for a perfect fluid of constant density.
In general relativity, the local temperatufe= (9s/dp) ~*
is a very real quantity, as it is the temperature as measured by 3k(R)RA NuR R om
local free-falling observers. Likewise, the global tempera- S= °<1— ) \/=— arcsim//—— k(R)},
ture, T, is the temperature that would be measured by an 4 m 2m R
observer at infinity. This corresponds almost exactly to the (56)
case we were considering in the long-range lattice model. . . . L
There, the global temperature could be measured by isotheWhereR is the radius of the fluid antdis given by
mally taking a spin and moving it away from the system so
that it no longer felt the interaction, and then measuring its k(R)=+1-2nm/R, (57)
temperaturdthis is like measuring the temperature at infin-
ity). The local temperature could be measured by cancelingnd is virtually identical to Eq30). mis the total energy of
out the local magnetic field caused by the interaction, just athe material as measured at infinifthe Arnowit-Desser-
going into free fall causes one to not feel the gravitationalMisner masstADM) [21]], and therefore we use the same
“force” (not including the tidal force Although in general symbolmwe have been using for the total energy. Likewise,
relativity the local temperature is just as “real” as the global 3, is the temperature as measured at infinity, and is thus the
temperature, this cannot be used to create a perpetual motid@@me quantity as we have been calling the global tempera-
machine, because the energy one could extract by movin@”e. Here, the gravitational consta@thas been set to 1.
from a hot local temperature to the cold temperature at in- Earlier, we saw that for a black hole, we had the Smarr
finity is exactly canceled by the work needed to escape théelation m=2T,S, while for ordinary mattem=TS. We
gravitational potential. Gravity is universal, i.e., all objects Showed that the factor of 2 yielded the area-scaling property
feel it, so there is no heat engine that could be used to creaf the black hole. It is therefore interesting to see how the
a perpetual motion. In contrast, not all heat engines woul@NtroPy of the perfect fluid behaves. Indeed, putting the
feel the spin-spin interaction which we introduced in the Iat—Chemlcal potenpal_ 100, We can calcuIaIgSTO/m_as given
tice model, however, there, the local temperature did noPy Eq. (57). This is done in F|g. 1 We_ essent.|ally plot
have the same physical meaning as it does in general relative' >US the strength of the graV|tat|onaI_ '”ter?‘c“'“m- We
. L . could have also put back the const&in which case one
ity. This is because the energy levels of each spin are beﬁasm/RHGm/R) and ol : .
. plottedy versusG holdingm/R con
described by the conserved eneigy and not by the local stant.
energyE. It is interesting that one requires the equivalence We find, that when the gravitational interaction is weak
principle in order for the local temperature to be areal physif(i.e_’ m/R is smal), the quantityy is 1 just like in ordinary
cal temperature. On the other hand, if the local temperature ig ater. As we increase the strength of the gravitational field,
physical, then one needs the universality Qf gravity in ordery gets smaller, and approaches 1/2 just as it would for a
to protect the second law of thermodynamics. black hole. However, we cannot plot/R greater than 4/9,
We now turn to the entropy scaling behavior of the gravi-since at this point, the central pressure diverges. The strength
tating fluid. We use the Gibbs-Duhem relation to CalCUlateOf the interaction which Corresponds to a black holenifR
the scaling behavior. The actual calculation, while instruc-=1/2 (the Schwarzschild radiusThis can, however, be ob-
tive, is done in Appendix D. We also describe how to per-tained if we have not only central pressure, but also tangen-
form such calculations in greater generality in Appendix C. tial pressure. Indeed, we have done this for spherical shells
A related calculation to the one here is that of Zurek andwhich have such tangential pressure, and seen that the matter
Page[20] who have calculated the entrofiyumerically for ~ becomes area scaling before a black hole forh3. We see
the case of a perfect fluid surrounding a black hole, assumintherefore that while the system obeys the Gibbs-Duhem lo-

a specific equations of state. cally, it does not obey it globally. This suggests that the fact
For a spherically symmetric fluid of constant density, onethat black holes have an entropy proportional to their area
can calculate the entropy exactly, and it is given by may be related to the long-range interactions of gravity
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the accidental aspects of black hole thermodynamics from
0.35} the more fundamental ones.

We have also seen several new effects in nonextensive
systems which are worthy of more exploration. We have
found that the local temperature can vary throughout a sub-
stance, and also that an isolated system can appear to be in a
distribution of different temperatures, i.e., canonical en-
sembles. It would be interesting to apply this formalism to
other theories.

Here, we have studied fairly simple systems, such as clus-
ters of lattices with different uniform long-range interactions.
We have generalized the formalism for more complicated
interactions, but it would be useful to explore this further. In

FIG. 2. Fraction of entropy densisfr)/Svs radiusnormalized ~ particular, one expects many related phenomena in other
to 1) for the perfect fluid. The curves plotted are for a strength ofself-interacting theories. Non-Abelian gauge theories such as
gravitational interactionn/R=4/9, 1/3,1/4, and 0Om/R=0 corre-  ¢* theory may be interesting arenas of study. Numerical
sponds to the straight line, while/R=4/9 corresponds to the up- simulations might also be particularly useful to study some
permost line. of these effects in more complicated systems.

It would also be useful to attempt to see these effects
rather than only being a special property of the horizon. Area@xperimentally. The case of two clusters of lattices might be
scaling in gravitational systems exists even though their is noealized by making the clusters very small, so that the spac-
black hole horizon. ing between lattice sites is much smaller than the range of

The distribution of entropy is plotted in Fig. 2 for various the spin-spin coupling.
strengths of interaction. When the gravitational interaction is
negligible, the entropy is constant throughout the sphere as ACKNOWLEDGMENTS
one expects. As the strength of the gravitational coupling is ] )
increased, the entropy moves to the surface of the sphere. | would like to thank Jacob Bekenstein for many helpful
This intriguing effect helps in explaining why the entropy gnd interesting discussions on the subjects _pre_senteq here. It
becomes more area scaling. In the case of tangential pre§ also a pleasure .to thank Michal Horodecki, Eliot Leib, and
sure, where one can actually approach the black hole radiu®on Page for their valuable comments. J.0. acknowledges
one finds that all the entropy lies at the surface of the matethe support of the Lady Davis Fellowship Trust, and ISF

rial. Grant No. 129/00-1.

There is another remarkable property of the entropy of a
perfect fluid which is worth mentioning. One should ask APPENDIX A: THE DEFINITION OF LOCAL
whether the entropy as we have calculated, is an extremum. TEMPERATURE

Indeed, it is, however, only an extremum if Einstein’s equa-
tions are satisfied22,23. It is remarkable, because there
seems to be na priori reason why the entropy should only
be an extremum in curved space for the particular space-tim
given by Einstein’s equations. This interesting connection i
discussed in some detail in R¢R23]. ISK(E)

In Sec. Il B, we derived the distribution of the microlocal
ensemble by looking at a systefand reservoirR in the
lg]icrocanonical ensemble. The local temperature was defined

Al

e=—p (A1)

VIl. CONCLUSION o S .
i.e., it was defined in terms of the entropy of the reservoir. In

We have introduced a formalism for studying the thermo-the noninteracting case, one tends to think of the temperature
dynamics of interacting systems. The formalism is partly in-gs

spired from our understanding of thermodynamics in general

relativity. This allows us, not only to use general relativity to . JSs(Ey)

undertand nonextensive thermodynamics, but also one can E JE

learn more about thermodynamics in curved space by look-

ing at thermodynamics in other interacting theories. Our result of Sec. Il F show thgBc# B¢ . The definitions

We have seen, for example, that many of the properties ofre equivalent in the case whesés just a smaller part of a
black hole entropy also exist in other systems. Likewise, thenych larger system, i.e., when we formally divide a large

redshifting of temperatures has a place in other theories afystem intoR andsS. In this case, one can show
gravity which are not metric theories and have a flat space-

time. One can therefore conclude that many of the effects in Be= B¢ (A3)
general relativity have an analog in more classical theories.

These results are helpful when attempting to construct decause of symmetry.

guantum theory of gravity because it enables one to seperate To see this, we write the total energy of the total system as
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m(E)=E+G(E), (A4) E: 1-Gy(My+Ey)—2G (M1 +Ey) (B2)
. . . - +Ey)— +E,)’
whereE=E+ Eg as before. Then taking the partial deriva- To 17Gu(M1+Ey) =2G,(Mo+Ey)
tive of Eq. (A4) with respect toE s and holdingm fixed, we Examples of systems which have such an interaction in-
find clude two gravitating spheres separated by a distahaes
JE IG(E) well as two concentric spherical shells at radiiandr,. In
2Ry +( ( ) the latter case, we have,=G/2r; andG,,=G/r,, whereG
JEs/ JEs is Newton’s constant. To first order in the coupling constants,
the temperature difference for two shells can then be written
_ JG(E) as
IEr | . .
1
=—1 A5 (—) =1-G(My+E)| ———|. (B3)
( ) Tz shells v 2
ining this with Eq.(1 in th i I .
(égngglg)mg this with Eq(19), we obtain the desired result One can use a completely independent method to calculate

%e temperature ratio in full general relativity for this case,

Other special cases are when the reservoir has no lon . : . !
range interactions or when the system has no long-range i ind one finds that the results are identical for weakly inter-
teractions. In the former case. one has acting fields where general relativity and Newtonian me-

chanics coincide. This, to a large extent, justifies the assump-

IG(Ey) tions we made at the beginning of this paper.
Be=PBe|1— JE ) ; (AB) Essentially, for gravity, the derived temperature difference
S coincides with what one expects from the Tolman relation,

except in this case, there is a correction due to the fact that

we are not considering a thermal system in a fixed gravita-

1_(&G(ER(Es))> } tional background, but rather the thermal system is partly
m

and in the latter case

(A7)  responsible for the gravitational interaction. For this reason,
we see that the ratio does not only depend on the ratios of the

) redshifts - GM; /d, but on 1- G(M;+E;)/d, i.e., the ther-

Both these results follow from Ec(19)_. Note that in thg mal energyE; also contributes to the redshift factor.

former case, one also has that there is only one term in the 5ne can also argue that the local temperature difference is

sum in Eq.(15). This is because in this casg is uniquely  jngeed real for a freely falling observer, who essentially will

Be= B¢

JEg

determined fromEr=m—Es—G(Ey). be unaware of the additional gravitational interaction. Of
course, this already invokes the equivalence principle. There

APPENDIX B: A TOLMAN RELATION IN NEWTONIAN are two other interesting points worth mentioning. One is
GRAVITY that in order to get the temperature difference one needs to

We have seen in the case of the long-range lattice mod ave a differences in gharg_(am this case, a d!ﬁergnce be-
tween M, and M,). It is this asymmetry which is partly

that it has behavior reminiscent of a Schwarzschild geom. nsible for the temperature difference. Additionallv. on
etry. This indicates that many of the thermodynamic proper—eSpO sible for the temperature ditterence. onally, one
eeds self-interactions, i.e., the thermal endfgyneeds to

ties one associates with general relativity may be present iR i . : . .
Newtonian gravity. Indeed, we will now see that a also gravitate. Thus, our model is not identical to Newtonian

Newtonian-type interaction does lead to the Tolman reIationgraVity’ but includes the fact that all energy gravitates. This

Here, we will see that it arises from the long-range interac-then seems to be the key ingredient which gives temperature

tions and not necessarily from the curvature of space—time.d'ﬁerences'
We imagine that we have two gravitating systems with
massM; andM,, and thermal energ, andE, (which is APPENDIX C: CONTINUUM LIMIT

the additional kinetic energy present in the molecules of each |, sac |1 E we looked at the local temperature and global
system, and we imagine that th_eir volumes are fixed. Thetemperature of two systems in equilibrium. We then exam-
systems are a;sgm.ed to be r‘? d|srt]ame@art but '; th_ermal_ ined a simple example of two clusters interacting via two
contact(_one might imagine that t ereis a con UC“”Q WIr€ gifferent uniform interactions. It is worthwhile to generalize
connecting the two systemsie will consider the following i For the case of a small number of regions, one can use
Newtonian-type interaction: the methods introduced earlier for just two regions. How-
Mt Bt Mot Eae " 2 n 2 ever, one can imagine a more gompllcatgd interaction like
M=My+Es+Mat+Ep= Gi(MyTEy) = Gao(MatEp) one of Eq.(3) where the interaction term is not a constant
—G(M;+E))(My+E,), (B1)  over any area, but instead changes from site to site. We can
write insteadJ;; = J(x;;) and then write all thermodynamics
whereG are the coupling constants. Note that the model useguantities as a function of the positiog; . In fact, it will
the fact that thermal energy also gravitates. Using @§) prove simplest to go to the case where we treat a system as a
leads to a temperature ratio of continuum—it is then easy to go back to the discrete case.
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Let us now derive the relationships between the various pB=Popo- (C8
local thermodynamical quantities. We essentially carry out a
similar procedure as we did in Sec. Il F. In other words, we  Finally, we can find the variation in the remaining “inten-
extremize the total entropy at fixed total energy. We considegive” quantity—the pressurp for systems which have par-
the entropy in terms of a densig(p(x)), wherep can be ticle flow. In order to let the system remain in mechanical
thought of being related to a spin density. One can think of equilibrium, the pressure will have to vary throughout a sub-
as the local energy density in analogy to the quarEity.e.,  stance in order to keep the substance from flowing. This
it is the continuum version oE. More explicitly, we can requirement gives
write p(x) =h(x)o(x), whereo(x) is the spin at each site

and h(x) is the energy gap at each site in the case where dp
there is no interaction. We will however, leave it general, and ax F(x), (€9
simply write s(x) for simplicity (with the understanding that
sis a function of the local energigs.e., whereF(x) is the force due to the interaction. If the total
is simply some potential, then one would ha¥x)
s=J s(x)dx. (Cy =dnmvdx.

We then extremize this by taking the variation and keep- APPENDIX D: GRAVITATING PERFECT FLUID
ing mfixed. In order to do this, we append a constraint to the
above expression, so that we instead extremize

m-— f mdx
Here, we are merely introducing the formalism. Indeed,
=dm/dx may be a complicated function, however, for the
general lattice model of EG3), m is a functional of the spins

at each site. It is in fact also functional pf We can now
vary L with respect todp.

In this section, we will calculate the entropy of a spheri-

cally symmetric, self-gravitating perfect fluid. The field

equations which govern the gravitating perfect fluid are well

. (C2)  known [24]. Spherical symmetry implies that the metric
takes the familiar form

L=S+A\

ds?= —e?®dt?+ e dr2+r2dQ?, (D1)

where® and A are functions of. The stress-energy tensor
of the perfect fluid is given in terms of the energy density
p(r) and radial pressurp(r) by

5L=f (ﬁ_ﬂ_m) 5p dx THY=(p+p)Ur(r)u”(r)+p(r)gH”, (D2)
ap ap
) whereu*(r) is the four-velocity of the fluid ang*” is the
:f (ﬂ(x)—ki—:) 5p dx. (cy  metric. Einstein's equation yield
e 2A=1-2m(r)/r, (D3)
Since this must vanish for alip, we have that
where
ap
B(X)=—Po- (CH ‘
am m(r)=J 4mr2pdr (D4)
0
Here, we have set the constant 8,. One can see that in
the case of no interactions, we have and
m= f pdx, (C5) d _mt4mr’p (D5)
dr r(r—2m)’

and therefore ) ) )
Outside the boundary of the fluid=R, the functionsA and

m=p (cep P reduceto
so that we recover the standard result that the temperature is e AR =g2M®

a constant. One can likewise obtain —1-2M/R, (D6)

J
M(p)_f’zl%_ (C7)  whereM=m(R).
am There are three conditions for equilibrium. If the system is

] ) in thermal equilibrium, it must obey the Tolman relatidi®]
Here, the conserved energy can be defined as @ijthas

po=(dm/ap)p and as with Eq(17), we have T(r)=T,e *O, (D7)
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where T, is the temperature as measured at infinity. Like- e®?=2Kk(R)—ik(r) r<R, (D13)
wise, the chemical potential at any two points can be related
by the redshift to the value of the chemical potential on the k(r)—k(R)
boundary by p=pom r<Rr, (D14)
w(r)= “(R)e(D(R)_ (DY) wherek(r)=y1-2Mr?/R3. It is worth observing that the
e®() pressure at=0 diverges as BI/R—8/9 and as a result, this
limits the size of our sphere of fluid.
The condition for hydorstatic equilibriurfi.e., no radial in- We can now compute the entropy using EQ12).
falling of any fluid elementcan be found from local energy-
momentum conservation 4w (R k(R) 3k(R)—k(r)
S= T_f rdrl Po gy AN k)
TH'=0, (D9) -0
L 3k(R)R NuR R _|2M
which implies - _ - -
P =T, (1 Vi )[VZM arcsim/ = k(R)}.
(p+ p)¢1r_ prr' (DlO) (D15)

For a perfect fluid of constant density, this leads to the well

known Oppenheimer-Volkoff equation We see therefore that the entropy is no longer an exten-

sive quantity and does not scale linearly wNrandM, as it

dp  (ptp)(m+4mrp) would for a system whose entropy scales like the volume of

ar- r(r—2m) , (D11)  the system. However, if we expand our solution in terms of
the gravitational couplingM/R, then we find, to zeroth or-

and simply balances the pressure gradiant with the force duder inM/R,
to gravity until equilibrium is reached.

We can now calculate the total entropy of the system.
Sincesis the local entropy as measured by observers in the . . )
rest frame of the fluid, we can integrate over the sphere tgmd we recover the extensive scaling of the entropy. To first

obtain the total entropy. The appropriate volume element order iInM/R
1 2M T o1
“swr// T (O

for a shell of thicknessir is dV=4sr2e*dr and so
One would like to calculate the entropy for various equa-
A (R y oA tions of state. Unfortunately, one finds that for any realistic
= T_J ree” "[p+p—ponldr, (D12)  equation of state, the system is of infinite size. One can rem-
00 edy this by having different equations of state at different

where we have used the Gibbs-Duhem and Tolman relation§2dii, but this makes calculating the scaling behavior of the
In general, we cannot solve this expression explicitely,e”tmpy completely meaningless, since it would depend more

however, for a perfect fluid with constant energy density®" how'one changed the equations of state rather than on any
p(r)=p, and constant number densit(r)=n,, the ex- properties of the states themselves. Another way of obtaining
[0} (o]

pressions for the metric and pressure are well knf@;25. convergence, is to use the so-called “polytropic” equations
of state such as

S=[M—u(RN]/T,, (D16)

S=[M—u(R)N]

S= fORde(r)

(4m/3)por® r<r warD)
m _{M:(4ﬂ./3)poR3 r>R, p_(ﬁoﬂo'i_b)p : (D19
(4mf3)n.r® (<R Howev_er, they are not true eqL_Jatior_ls of state ar_ld come from
N(T) :[ m3) o assuming that the m_atter is adlabath as a function ?ﬁe_y
N=(47/3)n,R® r>R, are therefore not suitable for states in thermal equilibrium.
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