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Thermodynamics with long-range interactions: From Ising models to black holes
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Methods are presented which enables one to analyze the thermodynamics of systems with long-range
interactions. Generically, such systems have entropies which are nonextensive~do not scale with the size of the
system!. We show how to calculate the degree of nonextensivity for such a system. We find that a system
interacting with a heat reservoir is in a probability distribution of canonical ensembles. The system still
possesses a parameter akin to a global temperature, which is constant throughout the substance. There is also
a useful quantity which acts like alocal temperaturesand it varies throughout the substance. These quantities
are closely related to counterparts found in general relativity. A lattice model with long-range spin-spin cou-
pling is studied. This is compared with systems such as those encountered in general relativity and gravitating
systems with Newtonian-type interactions. A long-range lattice model is presented which can be seen as a black
hole analog. One finds that the analog’s temperature and entropy have many properties which are found in
black holes. Finally, the entropy scaling behavior of a gravitating perfect fluid of constant density is calculated.
For weak interactions, the entropy scales like the volume of the system. As the interactions become stronger,
the entropy becomes higher near the surface of the system, and becomes more area scaling.
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I. INTRODUCTION

In the study of thermodynamics, it is almost always im
plicitly assumed that the system does not possess long-r
interactions. Very little is known about the thermodynam
of systems which do possess long-range interactions, ex
in special cases such as plasmas where the electromag
interactions are screened or systems which have no ov
charge@1#. In both these instances, one can use stand
thermodynamics, since effectively there is no long-range
teraction. If however, the long-range interactions are
screened, then difficulties are encountered, such as the
existence of the canonical ensemble@2# or inequivalence of
microcanonical and canonical ensembles, and potential
of a stable equilibrium configuration@3,4#. The latter is
sometimes attributed to negative heat capacities@5#. Nega-
tive heat capacities are not only present in astrophysical
tems, but have even been observed in fragmenting nucle@6#
and atomic clusters@7#. It is not known how to deal with
these systems generically, although there have been s
attempts to understand them outside of standard therm
namics using the Tsallis entropy@8# ~cf. also Ref.@9#!.

A principle motivation for this work is therefore to pro
vide a framework in which to study such systems. A seco
motivation comes from the study of black-hole thermod
namics. There it is found that the black-hole possesses
entropy which has unusual properties. Here, we will sh
that these properties are not limited to the black hole, but
other systems with long-range interactions exhibit related
havior. We will essentially construct an analog of a bla
hole by adding long-range interactions to a spin-latt
model.

Systems with long-range interactions are often referre
asnonextensivebecause the entropy and energy do not sc
with the volume of the system. Normally, if one has a th
modynamical system and one holds the intensive varia
1063-651X/2003/68~1!/016108~17!/$20.00 68 0161
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~temperature, pressure, and chemical potential! fixed, then if
the size of the system is doubled, the extensive variab
~entropy and energy! will also double. This is not true if the
interactions are long range.

The purpose of this paper is to develop methods an
formalism to explore a number of facets of such nonext
sive systems. We shall employ a principle of ‘‘local exte
sivity’’ which enables one to define thermodynamical qua
tities for an interacting system. We shall also show how
classify the degree of nonextensivity of the system by cal
lating the scaling behavior of the entropy as a function
total energy. The motivation for this part of the study com
from general relativity. There it is found that the entropy o
black hole is proportional to its area, rather than its volu
~i.e., the entropy is nonextensive!. In this study, we will see
that this is a generic property of interacting systems, rat
than something unique to the black hole.

We will also see that generically, a system interacti
with a reservoir is not at a particular temperature, but rat
is in a probability distribution of temperatures. This will b
found by studying a system interacting with a reservoir in
microcanonical ensemble, i.e., the total energy of the sys
plus reservoir is fixed. Usually, if one then only looks at t
system, it will be in a canonical ensemble~fixed tempera-
ture!. When interactions are present, this will not be the ca
This leads us to introduce a new type of ensemble, which
call the microlocal ensemble. It is equivalent to the microc
nonical ensemble when there are no interactions.

Despite the fact that a system is not found in the canon
ensemble, we shall see that one can define a quantity we
the global temperaturebo . It describes the system as
whole, and is written in terms of the total energy, includi
the interacting terms. There is also alocal temperatures, a
quantity inspired by general relativity. Both types of tem
perature are measurable in principle.

In the case of short-range interactions, two syste
©2003 The American Physical Society08-1
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brought into thermal contact will be at the same temperat
Here, we will show that also for interacting systems, t
global temperature of two systems is the same. This just
to some extent, our use of the term temperature to desc
bo . However, we will see that if one has two separa
systems with the same global temperature, then when
are brought into contact adiabatically, they will reach a n
global temperature.bo is therefore not an intensive quantit
We will also see that the local temperatures of the two s
tems are, in general, different for each system when in th
mal equilibrium. Such an effect is analogous to the Tolm
relation@10# which exists in curved space. There one find
temperature gradient due to the curvature of space-time.
sentially, frequencies are redshifted by curvature. Since
temperature gives the probability distribution of a frequen
spectrum, it is also redshifted. Here, we see that such
effect does not exist solely in curved space-time, but can
be thought of as due to the presence of long-range inte
tions.

To make our discussion more concrete, we will examin
toy model consisting of a lattice of spins in a magnetic fie
and interacting via a spin-spin coupling. However, rath
than only nearest neighbor interactions, we will also consi
the long-range couplings. We will consider the case o
uniform long-range interaction, as well as the case of t
different systems interacting via two unequal uniform int
actions. Such a situation arises when one considers two
tice clusters which are of small size. We will also discuss
continuum situation, where the interaction can be arbitr
and varies from site to site.

We then consider thermodynamics in the general the
of relativity. Comparisons between the lattice model and
black hole thermodynamics provide another motivation
this study. Previously, analogs of black holes@11,12# ~so-
called, acoustic, or solid state black holes! have been used to
understand black hole radiation. However, they are not u
ful for understanding the black hole entropy. Here, we
that one can construct a black hole analog that can be us
study black hole entropy. One finds that the entropy can
nonextensive, just like a real black hole. We find for t
analog that there is an infinite redshifting between its lo
temperature and its global temperature which has exactly
same form as a black hole. At exactly the point where
systems acts like a black hole, a degeneracy in the lo
energy levels forms. This degeneracy is universal, in
sense that it only depends on the form of the interaction.
universality is somewhat reminiscent of the universality
black hole entropy.

We will also investigate other gravitational systems
general relativity. In particular, we look at the entropy sc
ing behavior of a gravitating perfect fluid. The motivation f
this comes partly from an earlier study@13# where it is
shown that the black hole is not the only gravitating syst
which has an area-scaling entropy. A system of shells ha
entropy that scales as the volume when the gravitationa
teraction is weak, but the entropy becomes area scaling a
point before a black hole is formed. Here, in looking at t
gravitating perfect fluid, we find related behavior. We c
look at the entropy scaling behavior not just in limitin
01610
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cases, but for all strengths of the gravitational interaction.
the strength of the gravitational interaction is increased,
entropy slowly moves to the outer surface of the perf
fluid. One finds that the total entropy is nonextensive, j
like in a black hole, and approaches area-scaling behavio
the strength of the gravitational interaction gets stronger.

We also explore gravitating systems in the context
Newtonian-type dynamics. This is done to show that the r
shifting of temperatures—usually considered to be an ef
related to the curvature of geometry—also exists in ot
gravitational models which are not geometric theories.

The paper is organized as follows. In Sec. II, we introdu
our formalism. First, in Sec. II A, we introduce our assum
tions, which we calllocality and local extensivityand show
that these assumptions are obeyed by a number of com
systems. Next, in Sec. II B, we use the microcanonical
semble to show that a system interacting with a reservoir
not be found at a particular temperature, but rather will be
a probability distribution of different temperatures. Noneth
less, there is a parameter which behaves very similarly
temperature, which we call the global temperature. This
defined in Sec. II C. The physical significance of the glob
temperature, as well as another parameter called the l
temperature is explored in Secs. II D and II E. Then, in S
II F, we show that the global temperatures of two syste
brought into contact are equal at equilibrium. The local te
peratures need not be equal~an effect reminiscent of red
shifting which is usually considered to be the sole domain
general relativity!. This allows us to study lattice model
where the long-range interaction is not uniform. Next,
Sec. III, we explore in some detail a lattice model with lon
range interactions. In Sec. IV, we show that such a sys
can be made into an analog of a black hole and has a t
perature and entropy with many properties reminiscent
black holes. In Sec. V, we show how one can generica
calculate the entropy scaling behavior of an interacting s
tem. This is done for a gravitating perfect fluid in Sec. V
We find that the entropy becomes more area scaling as
gravitational interaction gets stronger. We conclude w
some general remarks in Sec. VII and point to some o
questions.

In Appendix B, we look at systems under the influence
Newtonian-type gravity and show that an analog of the T
man relation exists—local temperatures are red shifted
Appendix C, we look at more general interactions and go
the continuum limit.

II. A FORMALISM FOR SYSTEMS WITH LONG-RANGE
INTERACTIONS

A. Locality and local extensivity

Let us consider two interacting systems 1 and 2 with to
energy

m5E11E21G~E1 ,E2!. ~1!

Here, G(E1 ,E2) is some interaction potential~which may
include self-interacting terms! andm is the total energy@14#.
In the absence of the interactionG, the energy of each sys
8-2
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tem would beE1 andE2. We will refer toE1 andE2 as the
local energy. Likewise, E5E11E2 is the local energy of
both systems. In other words,E can be thought of as th
extensive part of the energy~or noninteracting part!.

In general, a complicated system will include many su
systems interacting together, or will be a continuum of se
rate systems at each point in space. For the purposes o
lustration, we will consider the simple case where we c
divide the total system into two parts. We will later consid
more complicated setups.

We now make two assumptions.
Locality. The state of each system is determined only

its local energyEi and local variablesqi .
Local extensivity. Correlations due to the interaction ca

be completely described by correlations in the energiesEi .
The first assumption is rather generic. The latter assu

tion is true for two systems interacting via a potential whi
can be put into the form of Eq.~1!. The essential requiremen
for local extensivity is that if the potential introduces corr
lations in microscopic variablesqi , then it will also result in
correlations between the local energiesEi . Correlations
which depend on other thermodynamical quantities can
be described using this formalism. The logic behind th
assumptions should become clear in a moment when we
sider an example, but an important consequence is that i
write the total entropy of the two systems asS(E1 ,E2) then

S~E1 ,E2!5S1~E1!1S2~E2!, ~2!

whereSi is the entropy of each subsystem. This relation
somewhat counterintuitive because when interactions
present one expects there to be correlations between the
systems, and therefore, one does not expect the entropy
additive. However, the entropy is only additive because
have written it in terms of the local energies. The entro
does not scale linearly with the total energym and is there-
fore nonextensive. Essentially, for fixedm there are correla-
tions which exist becauseE1 is not independent ofE2, but
once you specifyE1 and E2 you have completely specifie
each subsystem.

Equation~2! follows from our assumptions because if sy
tems 1 and 2 are only determined by local variables, t
specifying local variables, such asE1 andE2 determines the
number of possible states of each system. Furthermore, s
the correlations between the two systems are only corr
tions between values ofE1 andE2, then onceE1 andE2 are
specified there are no additional correlations which wo
destroy the additivity of the entropy as given by Eq.~2!.

To make this point clear, let us illustrate it with an e
ample; consider a lattice ofN spins with total energy

m5(
j

hjs j2(̂
jk&

Jjks jsk , ~3!

where thes j represent the spin at each lattice site~with
values61) and thehj are magnetic field values~or internal
energy levels!. The Jjk are spin-spin coupling constants.
the standard Ising model, one takes the sum such that^ jk&
are pairs of nearest neighbors. Here, we consider the
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where the spin-spin coupling is strong enough~or the lattice
spacing is small enough!, such thatJjk andhj are relatively
constant over a large region. For simplicity, we will imagin
that the system is composed of two such regions separ
by a short distance. This then gives~up to a constant!

m5h1e11h2e22J1e1
2/22J2e2

2/22J12e1e2 , ~4!

where the dynamic variableei is the number of up spins
minus the number of down spins inside each region, andJi
and hi are the coupling inside each region and are kno
constants.J12 is the coupling between each region, a
would presumably be smaller than theJi . The number of
sites in each region is assumed constant.

Now it is clear that our assumptions and Eq.~2! hold.
Since the local energy of each system isEi5hiei , specifying
Ei , completely fixes the number of up and down spins
each region. Furthermore, onceE1 is specified, then the stat
of system 1 is completely independent of the second syst
i.e., onceE1 is specified, the state of system 1 has be
determined~macroscopically!. This state will now not de-
pend on what value ofE2 system 2 happens to have. Diffe
ent values ofE2 will, of course, mean that the effective mag
netic field that system 1 feels will be different, but we ha
already specifiedE1, so its macroscopic state will no
change. Its microscopic state would not change either, s
the interaction of Eq.~4! does not introduce any distinctio
between different microscopic configurations. SpecifyingEi
is the same as specifyingei since thehi are known. For each
system, once the spin excessei is specified, then all spin
combinations consistent with this value ofei are equally
likely. Once again, oncee1 is specified for system 1, nothin
depends on what happens with system 2 insofar as w
states will be occupied.

The entropy of each systemSi is just given by the numbe
of independent ways of arranging the spins~since each ar-
rangement is equiprobable!, i.e.,

Si~Ei !52
Ni1ei

2
ln

Ni1ei

2Ni
2

Ni2ei

2
ln

Ni2ei

2Ni
. ~5!

There are, of course, still correlations between the t
systems—for fixedm, the number of up spins in system
2 will completely determine the number of up spins in sy
tem 1.

We will see that these assumptions also hold in the c
text of general relativity, but for the moment, let us return
the generic case and define the temperature. One has
careful because as we will see the canonical ensemble
not exist.

B. Multiple temperatures and the microlocal ensemble

The usual derivation of the canonical ensemble follo
from considering a large reservoirR in contact with a
smaller systemS. One fixes the total energy of the combine
system~hence, one is operating in the microcanonical e
semble!, but we let energy flow betweenR andS. One then
finds that the probability distribution of energies ofS is in-
dependent of the details of the reservoir. The distribut
8-3
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depends on a quantity which is defined as the tempera
and this defines the canonical ensemble. Here, we essen
repeat the standard derivation, except we have the interac
term given in Eq.~1!. We will find that the distribution looks
very different. One can think of the system as being in
probability distribution of different canonical ensembles.

Although we could work in the microcanonical distribu
tion from the very start, it will prove useful to define a ne
ensemble which we will call themicrolocal ensemble. Rather
than fixing the total energym, we shall fix the total local
energyE5ER1ES . The motivation for this should becom
clear as we proceed. In the case when the interactionG is
zero, the microlocal ensemble and the microcanonical
semble are clearly identical.

Let us therefore consider two system with fixed local e
ergy E, and imagine thatR is very large, and constitutes
reservoir, i.e.,ES!ER . We then allow energy to flow be
tweenS andR until the systems reach equilibrium. At equ
librium, and for large systems, one is most likely to find t
system in a state which maximizes the entropy.

The probability thatS has energyES for a fixedE is given
by counting the number of possible states of the sys
when S has local energyES and R has local energyER
5E2ES . The probability thatS has energyES for a fixedE
is a conditional probability and is denoted byp(ESuE), i.e.,
it is the probability of having energyES conditional on the
total energy beingE. We can write

p~ESuE!dES5
VS~ES!VR~ER!dES

ZE

5VS~ES!eSR(ER)dER /ZE , ~6!

whereVS(ES) and VR(ER) are the number of states ofS
andR with energyES andER . ZE is the partition function
obtained by counting all states with a fixedE

ZE5E
E
dESVS~ES!eSR(ER). ~7!

We can now expandSR(ER) around E to give SR(E)
2ES]SR(E)/]E. We then define the inverse temperaturebE
in the usual manner in terms of the local extensive entro

bE[
]SR~ER!

]ER
. ~8!

We shall refer tobE as thelocal temperature. The motivation
for using this term~as with many of the terms we are intro
ducing! comes from general relativity.

Note that the temperature of the system is defined in te
of the derivative of thereservoir’s entropy. In the noninter-
acting case, no issues arise from this definition: if two s
tems are in thermal contact in the microcanonical ensem
then ]SS(ES)/]ES.]SR(E)/]E. When long-range interac
tions are present, this is not necessarily true—a point wh
will be discussed in Sec. II F. One therefore should keep
mind that the temperature is a property of a reservoir—
gives the distribution associated with a smaller system
contact with it. In the case where the division of asingle
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system into a reservoir and smaller system is purely form
we will see that]SS(ES)/]ES.]SR(E)/]E. This comes
from symmetry considerations. Another special case is w
the reservoir has no long-range interactions. Both these c
will be discussed in Appendix A. In general, one can rel
bE to ]SS(ES)/]ES using the methods we will develop i
Sec. II F.

Using the definition of Eq.~8!, we find

p~ESuE!dES5
VS~ES!eSR(E)2ESbEdES

ZE
. ~9!

One can see from the above expression, that at fixedE, the
probability distribution ofS looks independent of the natur
of the reservoir, since the probability for the system to be
a certain energyES is

p~ESuE!dES}VS~ES!e2ESbEdES . ~10!

which looks like the ordinary canonical ensemble. We m
keep in mind, however, that the temperature is defined
terms of the reservoir, not the system.

Now, however, there is a key difference. We have work
in the microlocal ensemble, but in the microcanonical e
semble, it is notE that is held fixed, but ratherm. If there
were no interactions, then this would mean thatE is also
fixed ~if G50 then, in fact,m5E). Then, sinceE would be
constant, so wouldER(E). We would therefore recover th
fact thatS is in the usual canonical ensemble. However,
G(ES ,ER)Þ0, E need not be constant. For example,
G(ES ,ER) were quadratic inE, then at fixed total energym,
the system can be in one of two values ofE. For more com-
plicated potentials,many values of the local energy Eare
possible even though bothm andES are fixed. Therefore, for
an isolated system, one should not holdE fixed, but ratherm
as this is the conserved quantity, while the local energyE of
an isolated system can change.

In order to calculate the probability distribution of th
system in the microcanonical ensemble, we can usethe law
of total probability

p~y!5(
x

p~yux!p~x!. ~11!

To this end, we will use the fact that at fixedm, the prob-
ability that the system has local energyE is given by

p~E!5ZE /Zm , ~12!

where

Zm5E
m

dESVS~ES!eSR(ER), ~13!

i.e., Zm is the total number of states at fixed total energym.
Clearly, the probability that the local energy isE is just given
by the total number of states which have local energyE
divided by the total number of statesZm .
8-4
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We therefore find, that in the microcanonical ensemb
the probability distribution ofS in contact with a large res
ervoir is given by

p~ES!dES5(
E

VS~ES!VR~E!e2ERbEdES /Zm , ~14!

where the sum is taken over allE consistent with total energy
m. We see that one does not recover the usual thermal d
bution. Rather, one has a probability distribution of therm
distributions. There is also no decoupling of the probabi
distribution of the system from the reservoir. In other wor
one does not obtain a simple probability distribution like E
~10! which does not depend on the reservoir.

Although the microcanonical distribution is appropria
for an isolated system, there may be situations where
microlocal distribution is also appropriate. Such situatio
include cases where superselection rules single out a par
lar E ~for example, charge conservation or angular mom
tum conservation may not allow transitions from one va
of E to another!. One also may have cases where there
large gap between various values ofE so that once the sys
tem takes on a particular value ofE it is unlikely to change,
as this would require a large random fluctuation. In su
cases, a smaller system in contact with a large one wo
behave as if it were in a canonical ensemble.

Finally, we note that the local temperature, as we h
defined it, is a function ofE. It is for this reason that we hav
explicitly put in this dependence by writingbE . There will
be different ‘‘temperatures’’ dependent on what value ofE
the entire system is found in.

C. Global temperature and conserved energy

As we saw in the preceding section, a small system in
acting with a reservoir behaves as if it is at a number
different local temperaturesbE . Equation ~14! gives the
probability distribution in terms of this local temperature a
the local energyES . However, the local energy is not a co
served quantity, and it is not the energy that an observer
ascribe toS, since it does not contain the interacting ter
We therefore define the conserved energy of a system in
acting with another systemR as Eo[m(ES ,ER)
2m(0,ER).ES(]m/]ES) . This is the change in the con
served energy ofS, if one only makes changes to its ener
levels. Clearly,Eo is also a function ofE but we will not
write this explicitly. We will now show thatEo gives the
energy levels ofSin the presence ofR. Using the definition
above, we can rewrite Eq.~14! as

p~ES!dES5(
E

VS~ES!VR~E!e2Eobo(m)dES /Zm ,

~15!

where the global temperature is defined as
01610
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bo[
]SR~m!

]m

5
]E

]m
bE . ~16!

Note that this global temperature does not depend onE. We
have the important relationship

bEES5boEo . ~17!

Eo can be thought of as the effective energy, i.e., it is
energy of the system in the presence of the reservoir~in
general, it is the energy of the system in the presence o
interaction with another system!. bo can be thought of as the
closest thing one has to a physical temperature. If this is
yet clear from the above definitions, it should become clea
when we examine the example below.

D. An example: Physical significance of global quantitiesEo

and bo

We do not have a single thermal distribution, but rathe
probability distribution of canonical ensembles, one for ea
accessibleE. However, the quantitybo is the same for each
ensemble. In Sec. II F, we will see thatbo does possess
crucial quality of temperature—namely, two systems in eq
librium will have the samebo . Here, we point out some
other physical properties that the global quantitiesbo andEo
have.

Let us examine the physical significance ofEo when we
look at the spin model of Eq.~4!. Let us imagine that we
have a homogeneous system, so thath15h2 and J15J2
5J12, and we can therefore drop the subscript. Let us a
work in the microlocal ensemble with fixedE for the time
being as we simply want to understand the significance ofEo
andbo . Let us consider system 1 to be a single spin~we will
henceforth treat system 1 as the small systemS and system 2
as the reservoirR). This single spin acts like a probe, an
can be thought of as a thermometer. Then inserting Eq.~5!
into Eq. ~9!, one can verify that the probability of the the
mometer being spin up~and hence, having local energyh) is
equal to (N1e)/2N which is exactly as one expects, sinc
this is just the fraction of spins which are up in the ent
system~here,N is the total number of lattice sites!. However,
the true energy levels of the spin are not6h as they would
be if the system was noninteracting. One must also add
field due to all the spins in system 2~i.e., the rest of the
system, not including the probe spin!. This means that the
single spin actually feels a magnetic field ofh2Je. This is
exactly equal toEo . Therefore, someone measuring the e
ergy levels of the thermometer would conclude that the th
mometer had energy levelsEo and that based on its probabi
ity distribution, it is in a thermal distribution at temperatu
bo . This is exactly what is given by Eq.~15!. bo is, there-
fore, the physically significant temperature from the point
view of this type of a determination of temperature. No
however, that because of the self-interactions in the syst
mÞNEo , i.e., one cannot find the total energy by adding
8-5
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all the locally conserved energies of each spin. This is
another manifestation of the nonextensivity of the system

E. Physical significance of the local quantitiesE and bE

The temperature of the probe in the above example
bo , but we will now show how to use a probe to measure
local temperatureb. From the point of view of the formal-
ism, the local temperature is a useful quantity. It is clearly
intensive quantity, as can be seen from Eq.~2!. One the other
hand, the global temperature is not an intensive quan
Doubling the size of the system along with the total ene
will result in a change in the temperature, as can be s
simply from its definition~we will see encounter this mor
explicitly in Sec. II F!. We will also find that the local tem
perature has a very strong physical significance in gen
relativity, where it is the physical temperature measurable
free-falling observers. One would therefore like to know ho
to measure it in other theories. It can be measured using
following method. We again use the example from the p
ceding section of a single spin probe interacting with a lar
system and identical to it.

We use the probe to measure the temperature by
slowly and adiabatically drawing the probe away from t
rest of the spins until it no longer interacts with the syst
~i.e., J1250). Its energy levels then become6h. From Eq.
~17!, one sees that this spin then acts like a thermom
measuring the local temperaturebE , i.e., in an adiabatic
change the state of the system remains constant and its
erage spin is stille/N. However, the energy levels we wou
ascribe to the spin are now different. We would no longer
that the energy levels are given byEo since the magnetic
field is now zero and theeJ term no longer contributes. As
result, the spin acts as if it is in a thermal bath of temperat
bE and has energy levels6h.

One can use an almost identical method which remi
one of the measurement made by a freely falling observe
general relativity. In general relativity, the local temperatu
is in fact the physical temperature as measured by an i
vidual who is freely falling. The global temperaturebo is the
temperature measured by an individual at infinity. With
spin system, there is no distinction between different obse
ers. However, an analogy with general relativity motiva
the following method. One slowly~adiabatically! applies a
local magnetic fieldB5Je to the probe spin. This is exactl
the magnetic field which cancels the magnetic field of
surrounding spins which are acting on the probe. The pr
spin then has energy levels of6h and since its state has no
changed, it is as if it is in a heat bath of temperaturebE . One
can think of the applied field as being analogous to the gr
tational ‘‘force’’ which gets canceled when one goes into fr
fall.

It is worth noting that there is a significant differenc
between the method for measuring the local temperatur
the case we have described and the case where the int
tions are short range~in the Ising model say!. For example,
when we remove a single spin from this system, we
moving it in a known potential, since the interaction
mostly due to the entire system as a whole. On the o
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hand, in the Ising model, where the potential is due to nea
neighbor interactions, one does not know the local poten
since it is random. Therefore, in the long-range case, one
liberate all the long-range interaction energy by removin
spin. In the Ising model, much of the interaction energy
contained in thermal fluctuations and all of it cannot be l
erated in such a manner.

F. Unequal local temperatures at equilibrium, equal global
temperature

It is a standard result that for two noninteracting system
the temperatures will be equal when they are brought i
equilibrium. We now extend these results by showing t
the local temperature of two systems in thermal contact, n
not be equal, while each system’s global temperature will
equal. This in many respects justifies callingbo a tempera-
ture, even though it is not the temperature in the usual se
since the microcanonical ensemble does not lead to a can
cal ensemble.

We allow the two subsystems to exchange energy
keep the total energym fixed, while the local energyE need
not be fixed. At equilibrium, the system will be found in th
most probable configuration, i.e., the entropy will be an e
tremum so that the system is in the macroscopic state w
the maximum number of microstates. We can then find
extremum by varyingE1 andE2 at fixedm. The entropy of
two systems is given by Eq.~2!, and we now find the extre
mum to give the most probable configuration

dS5S ]S1

]E1
D

m

dE11S ]S2

]E2
D

m

dE2

5F ]S1

]E1

]E1

]E2
1

]S2

]E2
G

m

dE250. ~18!

Using the definition of local temperature of Eq.~8!, we find

b252b1S ]E2

]E1
D

m

5b1F11S ]G~E1 ,E2!

]E1
D

m
G , ~19!

where b i is the local temperature of each system, and
dependence onE is implied. One can also easily verify tha
the global temperatures of each system are equal, jus
using Eq.~19! and the definition ofbo . This to an extent
justifies the termtemperature. Note, however, that if we
move two systems together which are both initially at t
same global temperaturebo , then their new equilibrium
temperature can be at a different global temperaturebo8 . This
is due to the addition of new coupling terms in the to
energy. The global temperature is therefore not an inten
quantity. We will see this in the example below.

Using the two coupled Ising models of Eq.~4!, we would
get a temperature difference of
8-6
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b25b1

12J12e1 /h22J2e2 /h2

12J12e2 /h12J1e1 /h1
. ~20!

One can solve fore1 and e2 as a function of the total spin
excesse by explicitly calculating the temperature using E
~5! and equating it with the equation above. Solving the
two equations fore1(e2), will then allow us to give an ex-
pression for the temperature difference.

]S1

]E1
/
]S2

]E2
5

12J12e1 /h22J2e2 /h2

12J12e2 /h12J1e1 /h1
. ~21!

Using Eq.~5! for the entropy of thei th system gives

]Si

]Ei
5

1

2hi
ln

Ni2ei

Ni1ei
. ~22!

This gives the following equation:

S N12e1

N11e1
D h2

2(h12J12e22J1e1)

5S N22e2

N21e2
D h1

2(h22J12e12J2e2)

,

~23!

which can be solved graphically fore1(e2). This can then be
substituted back into Eq.~20!. We shall not do so here.

Now if initially these two systems~or clusters!, are far
apart, and at equal global temperature, then when pus
them together one cannot do so both adiabatically and
thermally~constant global temperature! as one can do in the
noninteracting case. This can be seen from Eq.~17!. Moving
the systems together adiabatically requires keepingEobo
fixed. But sinceEo changes whenJ12 becomes significant
one cannot keepbo constant. By recalculatingEo , one can
therefore calculate the new global temperature. We see th
fore that the global temperature is not an intensive quan

Finally, one can consider what happens when one is in
grand-canonical ensemble, i.e., we allow the number of p
ticles N1 andN2 to change, while keeping the total numb
of particles N and volumeV fixed. In this case, one ca
define the local chemical potential in the same way as
defined the local temperature

m52TS ]S

]ND
E,V

, ~24!

and one finds that

m1b15m2b2 . ~25!

This leads one to see that the local chemical potential
two systems will also not be equal, and that the ratio betw
the two chemical potentials is the inverse of Eq.~19!. One
can likewise define a global chemical potential

mo5
]m

]E
mE . ~26!

Finally, the preceding discussion allows us to write t
average entropy of two systems. Previously, we wrote
entropy of two systems asS(E1 ,E2), as in Eq.~2!, i.e., we
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gave the entropy of the two systems when one had energE1
and the otherE2. However, if the two systems are in contac
the energies will fluctuate until the system is in its mo
probable configuration. We can therefore write the aver
entropy of the two systems as

S~E!5S̄~E1 ,E2!, ~27!

where it is understood that this is the average entropy of
combined system.

III. AN EXAMPLE: THE LONG-RANGE LATTICE MODEL

In order to better understand the points raised in the p
vious sections, it will be useful to work out a very simp
example. We will consider a single system of spins intera
ing via a long-range potential which is constant. This mo
is simpler than the one of Eq.~4!, and has total energy

m5he2Je2/2, ~28!

where we have simply dropped the subscripts from Eq.~4!
and have got rid of the second cluster.

We essentially work in the microcanonical ensemble a
use the formalism we have introduced. There are other lo
range lattice models which attempt to solve similar inter
tions such as the Curie-Weiss model, where the interactio
made to scale inversely to the number of lattice sites. T
dependence of the interaction on the size of the system
problematic, but it ensures that the thermodynamic limit e
ists. A generalization of this is the Kac model@15# which has
an interaction with an exponential cutoff. Here, because
our formalism, there is no need to introduce such a cut
The model we explore is likewise related to the mean fi
approximation of the Ising model, although in the mean fie
approximation, it is as if one is working in the microloc
ensemble, rather than the microcanonical ensemble as w
here. In other words, in the mean field approximation, o
will not see the effects of having multiple values ofE. An-
other model which has been extensively studied are th
with 1/r potentials~see Ref.@16# for a recent review!.

In Eq. ~28! the local energy isE5he, and for fixedm
there are two possible values of the local energy which
be obtained by solving Eq.~28! for e

e6~m!5
h

J
@16k~m!#, ~29!

wherek is given by

k5A12
2Jm

h2
. ~30!

It is these two values ofe which will give us the two differ-
ent local temperatures. From Eqs.~16! and ~28!, we get the
relationship between the global and local temperatures
8-7
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b~e6!5boS 12
Je6

h D
57boA12

2mJ

h2
, ~31!

and likewise, usingEo5E]m/]E, we get

Eo5~12Je6 /h!he6

57k~m!E. ~32!

We will henceforth useb6 to represent the two local tem
peratures. It is also worth noting that Eq.~32! for the con-
served energyEo , gives the energy levels of a spin in th
presence of the effective magnetic field due to the app
field h and all the other spins of the system. In other wor
E is the raw energy levels6h in the absence of the long
range interactions, whileEo gives the energy levels in th
presence of interactions.

One can also arrive at Eq.~31! using the following
method which is highly illustrative. Consider the example
the preceding section of two spin systems with a local te
perature difference given by Eq.~20!. Now imagine that sys-
tem 2 is being used as a thermometer to measure the
perature of system 1, i.e., system 2 has no long-ra
interactions and minimal energyJ25J1250. In this case,
Eq. ~20! gives

b25
b1

12J1e1 /h1
. ~33!

This is precisely the same relation as Eq.~31! giving the
relationship between the local and global temperatures.
can conclude from this that a spin which does not have lo
range interactions with the rest of the system will ‘‘feel’’ th
global temperature—its local temperature will be the s
tem’s global temperature. On the other hand, a system w
is identical to the rest of the system will obviously have t
same local temperature as the rest of the system.

However, as we know this temperature depends on wh
branch of local energy the system is in, i.e., whether it is
the statee1 or e2 . If one were to look at a single spin i
order to determine the temperature, one would not find
spin in a thermal state. Rather, the spin would be in a dis
bution given by Eq.~15!, i.e., it is in a distribution of two
possible canonical ensembles, with two local temperatu
b6 corresponding to spin excesses ofe6 . The conditional
probability of a single spin being up, given a spin excess
eithere6 is given by Eq.~9!, i.e., the probability of it being
spin up having local energyh is

p~hue6!5
eb6h

eb6h1e2b6h
. ~34!

The probability of the system being in the statee1 or e2 is
given by Eq.~12!
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p~e6!5
V6 cosh~b6h!

V2 cosh~b2h!1V1 cosh~b1h!
, ~35!

whereV6 is the number of states of the total system w
spin excesse6 . It is given by

V65
N!

S N1e6

2 D ! S N2e6

2 D !

, ~36!

and can be approximated by Stirling’s equation. The to
probability of a spin being up or down is then given by E
~15!,

p~6h!5
V1e6b1h1V2e6b2h

2V2 cosh~b2h!12V1 cosh~b1h!
. ~37!

There is nothing special about the particular spin we
using as a probe, and so the average orientationp(h)
2p(2h) should be equal to the average magnetization
the entire systeme/N. We therefore have

e~bo!5N
V2 sinh~b2h!1V1 sinh~b1h!

V2 cosh~b2h!1V1 cosh~b1h!
, ~38!

while in the microlocal ensemble~fixed e6), we have

e6~bo!5N tanh~b6h!. ~39!

Finally, we note that one finds the usual phase transiti
at bo5J/2. Here, however, the phase transition is real,
like the false phase transition that can occur in the mean fi
approximation. It therefore exists in one dimension. It w
also have the property that there will be different averagee,
depending on which microlocal ensemble the system is i

IV. A BLACK HOLE ANALOG

Lattice model as a black hole analog

In general relativity, one encounters a number of intere
ing thermodynamical effects. Perhaps the most well kno
is the Tolman relation@10#. One finds, that in curved space
the temperature, as measured by local free-falling obser
varies from point to point. This is usually interpreted as b
ing due to the redshifting of frequencies due to the curvat
of space-time. We have already seen that for other syst
with long-range interactions, one has a variation of the lo
temperature. The results are closely related, and here we
see that they can have exactly the same form. This give
new interpretation to the Tolman relation; it is not the so
domain of general relativity as is usually believed, but
stead arises in other theories with long-range interactio
However, what makes the variation of local temperature s
cial in general relativity, is the physical meaning it has. W
saw that in the lattice model, the local temperature was n
constant throughout the system~just as in general
relativity!—however, the local temperature of the lattice d
not have the same physical interpretation as it does in g
eral relativity ~where it is the actual temperature as far
8-8
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free-falling observers are concerned!. In the lattice model,
the local temperature was only the physical temperatur
we applied a local magnetic field to cancel the effective m
netic field due to the rest of the system. This is closely
lated, however, since the applied magnetic field is very si
lar to the effect of free fall in general relativity.

Another important thermodynamical phenomenon in g
eral relativity is the black hole entropy. This is often view
as the key to understanding quantum gravity, since
theory of quantum gravity should presumably predict
correct value of the black hole entropy. It is therefore imp
tant to understand what aspects of the black hole entropy
specifically related to gravity, and what aspects arise in o
theories. We are therefore motivated to explore the simil
ties of our lattice model, with the types of effects one finds
general relativity.

Inspecting Eq.~31! for the lattice model, one cannot he
but be struck by its similarity with the Tolman relation fro
general relativity. Indeed, definingr 5h2 and putting the
coupling J5G, whereG is the gravitational coupling con
stant, we see that Eq.~31! becomes

b657boA12
2Gm

r
. ~40!

The positive solution is exactly the Tolman relation for t
redshifting of temperature in the Schwarzschild geometr
the Schwarzschild geometry being the space-time of an
charged nonrotating black hole or spherically symmetric s
In Appendix B, we will see that one obtains similar redshi
ing effects in a theory with a Newtonian potential.

Let us now show that our Ising model can be thought
as a black hole analog. Forr .2Gm, Eq. ~40! behaves like
the exterior Schwarzschild solution~the solution outside of
the black hole!. As we decreaser, the local temperature be
comes hotter and hotter~for fixed global temperature!.

Settingr 52Gm gives the black hole analog~or perhaps
more appropriately, the point in space where an obse
would be on the horizon!. In this case, there is an infinit
‘‘redshifting’’ between the global temperature and the loc
temperature as can be seen from Eq.~40!. This ‘‘black hole’’
solution is not only special because of the divergence in
redshift—it is also the point where the two solutionse1 and
e2 coincide. There is therefore only one local temperatu
One can therefore see that it is only the black hole ana
solution which is thermal. All other solutions do not give
thermal distribution. The black hole solution is also spec
in that there is a degeneracy in the energy levels—a p
which will become important when we discuss the syste
entropy.

There are two interesting cases to consider:~1! the case
where the global temperaturebo is finite and~2! where the
global temperature is zero.

In case~1!, if the global temperature is finite, then at th
point that r 52Gm the local temperature diverges. This
explained in the spin model by inspecting Eq.~32! and not-
ing that the pointh252Jm ~the analog of the black hole
horizon! corresponds toh5Je. This is exactly the pointEo
50 and therefore an individual spin sees no effective m
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netic field. In other words, both the energy levels of a sin
spin are zero. Therefore, sincebE5boEo is finite for finite
bo , we must have an infinite local temperature. Also, sin
individual spins see no net magnetic field, there is no p
ferred spin direction, and one findse50. This solution is
therefore the solution with maximal entropy.

Case~2!, with zero global temperature, can be thought
as being analogous to the extremal black hole~i.e., the
charged black hole solution with zero temperature!. In this
case, we can have a finite local temperature. This ag
comes from the relationbE5boEo and the fact thatEo
50. In this case,e is more or less arbitrary.

The gravitational analog has another interesting prope
In gravity, one requires that the radius of the black hole is
R52Gm which is the so-called Schwarzschild radius, o
cannot haveR,2Gm. The same is true here. There is n
value of e which would allow h2,2Jm. The black hole
analog solution occurs at the maximum of energym
5h2/2J which is exactly the Schwarzschild radius. The lim
h252Jm therefore corresponds to a horizon in a very re
sense.

There is also an analog of the ‘‘white-hole’’ solution
which occurs whenJ is taken to be negative. In gener
relativity, the white hole is a solution to Einstein’s equation
however, it is unphysical as it is unstable, and entropica
forbidden, requiring highly special intial conditions. How
ever, with the spin model, such a solution is complet
physical~and also more stable!. It corresponds to a minimum
of energym.

The case ofe2 reminds one of the situation interior to
black hole, since in this case, the local temperature is ne
tive as can be seen from Eq.~40!. Likewise, inside the black
hole, the light cone is tilted over, in such a way that energ
which are positive outside the hole, are negative inside
the black hole analog case, the negative local tempera
can be understood from Eq.~32! by noting that positive con-
served energiesEo correspond to negative local energies.
other words, a spin is more likely to be pointing up wi
energyh, even though this corresponds to a greater lo
energy ~it instead corresponds to a smaller conserved
ergy!.

We now turn our attention to the entropy of these so
tions. This is of interest because the black hole entropy
usually considered to have some unique properties.

~1! The black-hole’s entropy is proportional to its area a
not its volume. In the case of three spatial dimensions,
means that the black hole entropy is proportional to
square of its total energy~since the black hole radius is a
2m).

~2! The black-hole entropy is universal—the constant
proportionality between the entropy and the area is the s
regardless of the past history of the black hole. This me
that no matter what type of initial matter formed the bla
hole, its final entropy will only depend on the total energy
the black hole~or other conserved quantities in the case
charged and rotating black holes!.

~3! Before a system forms a black hole, its gravitation
entropy is zero, while the black hole entropy~which is enor-
mous! appears suddenly, when the system forms a bl
hole. The system may have some material entropy befo
8-9
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JONATHAN OPPENHEIM PHYSICAL REVIEW E68, 016108 ~2003!
forms the black hole, but this is negligible compared to
sudden increase in entropy it gets when it forms a black h
The particular spin model under discussion does not pos
properties which are identical to the black hole. However
does possess characteristics similar to the three menti
above.

To aid in this discussion, it is worthwhile to add the co
stant terms back into our expression for the total energym of
the spin model. From Eq.~3! one can put back the constant
so that instead of Eq.~28!, one gets

m5he22Je2/22JN/2, ~41!

whereN is the total number of spins.
Now the entropy one finds will depend on what one spe

fies about the system. Consider the case when one know
only m, but also the energyEo of every spin. In this case, th
entropy of the system is zero, since knowing the energyEo
of each spin is the same as knowing the spin itself, so
has complete knowledge of the system. However, when
system becomes a black hole analog ath252Jm, the energy
levels Eo of each spin become doubly degenerate and
system suddenly acquires an entropy of log 2 per spin. T
then is similar to property~3! of a black hole. Such a prop
erty also exists if one does not know the energy of each s
but instead knows the total local energy of the system,
one knows whether the system is in thee1 state or in thee2

state. When the system forms the black hole analog, th
two different states merge, and one acquires an additio
~although negligible! entropy of log 2. However, one inter
esting property of this entropy log 2 is that it is only a fun
tion of the form of the interaction, and not of the particul
system. In this system, we have a factor of log 2 because
potential is quadratic, and there are two possible local e
gieshe6 for fixed total energym. It is tempting to regard this
as a type of universality, similar to property~2! of the black
hole. The factor of log 2 comes because of the form of
interaction, and has nothing to do with the particular syste
just as the black hole entropy comes from the gravitatio
interaction and has nothing to do with the particular syste
For a general potential, there will ben possible local energie
at fixed energy and one might regard logn as being the en-
tropy associated with the interaction. One can also make
degeneracy arbitrarily large, by considering higher le
spins, rather than just the two level systems we have b
considering here.

Note that the degeneracy inEo which occurs in the spin
model also has a counterpart in the black hole. There,
also finds that the conserved energy is zero on the horizo
some sense, this is what enables one to ‘‘pack’’ a la
amount of entropy at no energy cost, close to the horizo

Finally, one can ask about the nonextensive propertie
the entropy. The entropy is nonextensive in the sense th
does not scale proportionally with the total energym. In
other words, the entropy is proportional to the local energE
~andN), but because the total energym does not scale lin-
early with E andN, the entropy will not be a linear function
of the total energy.
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If one uses the entropy as given by Eq.~5! then the en-
tropy will scale as bothN ande. If one uses the definition o
entropy discussed above, then the entropy will scale withN.
On the other hand, the scaling of the total energy is given
Eq. ~41! so a general system will not have an entropy wh
scales likem. For the case of the black hole solution, i.e
h252Jm, the total energy is

m5
J~e22N!

2
, ~42!

which has a completely nonextensive part~scaling likee2) as
well as the extensive part~scaling likeN).

Here, the entropy, while exhibiting nonextensivity as
function of total energy, does not scale the same way a
black hole~i.e., S}m2). However, one can imagine easi
constructing an interaction which has an entropy which
the same dependence onm as the black hole. For example
by having an interaction of the formm}AE. Then, for a
locally extensive system~i.e., S}E) such as the spin model
we have been considering, one will find the same entro
scaling behavior as a black hole.

We will discuss in more detail in Sec. V how one ca
derive the scaling relations for the entropy based on the c
siderations introduced here.

Finally, we note that one can arrange the phase transi
so that it puts the system ate50 and one finds a second
order phase transition into the black hole analog soluti
This is in contrast to the black hole case, where the jump
entropy suggests a first-order phase transition. Howeve
one looks at the entropy given that one knows the value
Eo for each spin, then the analog does indeed have a dis
tinuity in entropy.

V. NONEXTENSIVE SCALING LAWS

As discussed in Sec. IV, the scaling of the entropy will
longer be purely extensive. Here, we will show how to qua
tify the degree of nonextensivity for particular systems. T
main idea is to use the principle of local extensivity which
given as Eq.~2!. In other words, in terms of the local energ
E, the entropy is an extensive quantity. This can be written

S~lE!5lS~E! ~43!

in terms of the total energym, the system will not be exten
sive. Here, we will work in the microlocal ensemble—in th
end, one must sum over allE consistent withm. We will
therefore in this section writeS as a function ofE to remind
ourselves of this. In the case of densities, it is understood
s is a function ofr.

We now use a second ingredient, namely, the Gib
Duhem relation@17#

s5b~r1p!2mn ~44!

to relate the various thermodynamical quantities to e
other. Here,s, r, n are the entropy density, energy densi
and particle number density andT, m and p are the local
temperature, chemical potential, and pressure.
8-10
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It will prove easier~although not necessary!, to multiply
Eq. ~44! by a tiny volume elementV to get

E5TS~E!2pV1mN. ~45!

The standard derivation of the Gibbs-Duhem relation follo
from the first law and the principle of local extensivity. On
has

dE5TdS2pdV2mdN. ~46!

Then, analogously to Eq.~43!, one has

N~lE!5lN~E!, ~47!

and also that in a small volume, the quantitiesT, p, andm are
intensive, i.e., they do not change withl. One can then
integrate the first law to obtain the Gibbs-Duhem relatio
This relation is known as an Euler relation of homogeneity
Quantities which scale likela are Euler relations of homo
geneitya.

We can now express the local energyE as a function of
total energym, and also use the expressions, Eqs.~16! and
~25!, to express the local temperature and chemical poten
in terms of their global quantitiesbo andmo . Or, in the case
of a continuum system, one can use Eqs.~C4!, ~C7!, and
~C9! We would thus have all local quantities expressed
terms of global ones.

In the continuum case, one then gets for the entropy d
sity

s~r!5bo

]r

]ṁ
~r2p!2mobon, ~48!

which can then be integrated to give the total entropy
terms of global quantities. Just as we usedEo , we here use
the conserved energy densityro . The equation forp(x) will
depend on the the potential. In the following section, we w
calculate this quantity for a gravitating perfect fluid, and w
will see that the entropy will not scale like the volume of t
system, but rather, approaches area scaling behavior a
system becomes more strongly interacting.

As a general rule, one will obtainS(m,bo). From this,
one can then calculateS(lm,bo) in order to determine the
scaling behavior of the entropy. For general interactions,
find that S(lm,bo)ÞlS(m,bo). Instead, for homogeneou
potentials, one finds

S~lm,bo!5laS~m,bo!, ~49!

and the exponenta then quantifies the degree of nonexte
sivity of the system.

Perhaps the most famous example of this, is the case
black hole in three spatial dimensions, where, one finds
so-called Smarr relation@18#,

S5bom/2, ~50!

which is an Euler relation of homogeneity 2 in contrast to
noninteracting case ofS5bE which is an Euler relation of
homogeneity 1.
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One can show that the Smarr relation quantifies the n
extensive nature of the interaction. Differentiating the Sm
relation Eq.~50! and applying the first lawdm5TodS, one
obtains~in terms of a constantg)

S5gm2, ~51!

so that the entropy scales not asm as it would in the nonin-
teracting case, but asm2. We had such a term in our long
range lattice model. The black hole’s radius is atR52m and
so in terms of the black hole areaA, one obtains

S5
g

16p
A. ~52!

One likewise gets

To5~2gm!21, ~53!

which is the correct expression~up to a constant of propor
tionality! for the Bekenstein-Hawking temperature.

Finally, it is worthwhile to explore some additional rela
tionships one gets for extensive systems. Taking the der
tive of the Gibbs-Duhem relation Eq.~45!, and applying the
first law Eq.~46!, gives

dTS5Vdp2Ndm, ~54!

which yields the following two relationships:

S ]T

]pD
m

5
V

S
, S ]T

]m D
m

5
N

S
. ~55!

These relationships between intensive and extensive v
ables only hold for extensive systems, although they h
locally for nonextensive systems.

VI. ENTROPY SCALING BEHAVIOR IN GENERAL
RELATIVITY

General relativity is another theory in which our assum
tions of locality and local-extensivity hold. What’s mor
quantities like the local temperature have a very real phys
meaning—the local temperature is the physical tempera
measured by an observer in free fall. We will first discu
how our two assumptions hold in general relativity. Then,
will discuss the entropic scaling relations for the perfe
fluid. The principle motivation for the latter study come
from Ref. @13#, where it us shown that the entropy of
spherically symmetric material~approximated as a dense
packed set of shells! has an entropy which is area scaling
the point before it forms a black hole. It is therefore seen t
the area-scaling property of entropy is not unique to
black hole. This suggests that this property arises from
long-range interactions of gravity, and is not solely due to
horizon. Here, we will see similar behavior, however, b
cause we can solve the equations exactly, we can trace
entropy scaling behavior at all values of the gravitation
coupling constant.

Let us first see how our two assumptions hold in gene
relativity. A review of thermodynamics in curved space c
8-11
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JONATHAN OPPENHEIM PHYSICAL REVIEW E68, 016108 ~2003!
be found in Ref.@19#. Let us first consider the case whe
there is no gravitational interactions. The thermodynam
quantities,r, n, T, m, p, ands are taken to be the quantitie
measured in the rest frame of the substance. Let us
consider the case where we have gravitational interacti
In this case, we can go into the proper rest frame of
material and consider an observer who is released into
fall. By the principle of equivalence, this observer wou
measure the same quantitiesr, n, T, m, p, ands ~these are
what we called the local variables!. An equation like the
Gibbs-Duhem relation of Eq.~44! is a scalar equation. Sinc
it holds in the nongravitating case, it also holds for the lo
free-falling observer. Furthermore, since it is a scalar eq
tion, it holds for all observers.

In general relativity, the local temperatureT5(]s/]r)21

is a very real quantity, as it is the temperature as measure
local free-falling observers. Likewise, the global tempe
ture, To is the temperature that would be measured by
observer at infinity. This corresponds almost exactly to
case we were considering in the long-range lattice mo
There, the global temperature could be measured by iso
mally taking a spin and moving it away from the system
that it no longer felt the interaction, and then measuring
temperature~this is like measuring the temperature at infi
ity!. The local temperature could be measured by cance
out the local magnetic field caused by the interaction, jus
going into free fall causes one to not feel the gravitatio
‘‘force’’ ~not including the tidal force!. Although in general
relativity the local temperature is just as ‘‘real’’ as the glob
temperature, this cannot be used to create a perpetual m
machine, because the energy one could extract by mo
from a hot local temperature to the cold temperature at
finity is exactly canceled by the work needed to escape
gravitational potential. Gravity is universal, i.e., all objec
feel it, so there is no heat engine that could be used to cr
a perpetual motion. In contrast, not all heat engines wo
feel the spin-spin interaction which we introduced in the l
tice model, however, there, the local temperature did
have the same physical meaning as it does in general rel
ity. This is because the energy levels of each spin are
described by the conserved energyEo and not by the local
energyE. It is interesting that one requires the equivalen
principle in order for the local temperature to be a real phy
cal temperature. On the other hand, if the local temperatu
physical, then one needs the universality of gravity in or
to protect the second law of thermodynamics.

We now turn to the entropy scaling behavior of the gra
tating fluid. We use the Gibbs-Duhem relation to calcul
the scaling behavior. The actual calculation, while instr
tive, is done in Appendix D. We also describe how to p
form such calculations in greater generality in Appendix

A related calculation to the one here is that of Zurek a
Page@20# who have calculated the entropy~numerically! for
the case of a perfect fluid surrounding a black hole, assum
a specific equations of state.

For a spherically symmetric fluid of constant density, o
can calculate the entropy exactly, and it is given by
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S5
3k~R!Rbo

4 S 12
NmR

m D FA R

2m
arcsinA2m

R
2k~R!G ,

~56!

whereR is the radius of the fluid andk is given by

k~R!5A122m/R, ~57!

and is virtually identical to Eq.~30!. m is the total energy of
the material as measured at infinity@the Arnowit-Desser-
Misner mass~ADM ! @21##, and therefore we use the sam
symbolm we have been using for the total energy. Likewis
bo is the temperature as measured at infinity, and is thus
same quantity as we have been calling the global temp
ture. Here, the gravitational constantG has been set to 1.

Earlier, we saw that for a black hole, we had the Sm
relation m52ToS, while for ordinary matterm5TS. We
showed that the factor of 2 yielded the area-scaling prop
of the black hole. It is therefore interesting to see how
entropy of the perfect fluid behaves. Indeed, putting
chemical potential to 0, we can calculateg[STo /m as given
by Eq. ~57!. This is done in Fig. 1. We essentially plotg
versus the strength of the gravitational interactionm/R. We
could have also put back the constantG ~in which case one
hasm/R→Gm/R) and plottedg versusG holdingm/R con-
stant.

We find, that when the gravitational interaction is we
~i.e., m/R is small!, the quantityg is 1 just like in ordinary
matter. As we increase the strength of the gravitational fie
g gets smaller, and approaches 1/2 just as it would fo
black hole. However, we cannot plotm/R greater than 4/9,
since at this point, the central pressure diverges. The stre
of the interaction which corresponds to a black hole ism/R
51/2 ~the Schwarzschild radius!. This can, however, be ob
tained if we have not only central pressure, but also tang
tial pressure. Indeed, we have done this for spherical sh
which have such tangential pressure, and seen that the m
becomes area scaling before a black hole forms@13#. We see
therefore that while the system obeys the Gibbs-Duhem
cally, it does not obey it globally. This suggests that the f
that black holes have an entropy proportional to their a
may be related to the long-range interactions of grav

FIG. 1. g vs m/R for a perfect fluid of constant density.
8-12
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rather than only being a special property of the horizon. A
scaling in gravitational systems exists even though their is
black hole horizon.

The distribution of entropy is plotted in Fig. 2 for variou
strengths of interaction. When the gravitational interaction
negligible, the entropy is constant throughout the sphere
one expects. As the strength of the gravitational coupling
increased, the entropy moves to the surface of the sph
This intriguing effect helps in explaining why the entrop
becomes more area scaling. In the case of tangential p
sure, where one can actually approach the black hole rad
one finds that all the entropy lies at the surface of the m
rial.

There is another remarkable property of the entropy o
perfect fluid which is worth mentioning. One should a
whether the entropy as we have calculated, is an extrem
Indeed, it is, however, only an extremum if Einstein’s equ
tions are satisfied@22,23#. It is remarkable, because the
seems to be noa priori reason why the entropy should on
be an extremum in curved space for the particular space-
given by Einstein’s equations. This interesting connection
discussed in some detail in Ref.@23#.

VII. CONCLUSION

We have introduced a formalism for studying the therm
dynamics of interacting systems. The formalism is partly
spired from our understanding of thermodynamics in gen
relativity. This allows us, not only to use general relativity
undertand nonextensive thermodynamics, but also one
learn more about thermodynamics in curved space by lo
ing at thermodynamics in other interacting theories.

We have seen, for example, that many of the propertie
black hole entropy also exist in other systems. Likewise,
redshifting of temperatures has a place in other theorie
gravity which are not metric theories and have a flat spa
time. One can therefore conclude that many of the effect
general relativity have an analog in more classical theor
These results are helpful when attempting to construc
quantum theory of gravity because it enables one to sepe

FIG. 2. Fraction of entropy densitys(r )/S vs radius~normalized
to 1) for the perfect fluid. The curves plotted are for a strength
gravitational interactionm/R54/9, 1/3,1/4, and 0.m/R50 corre-
sponds to the straight line, whilem/R54/9 corresponds to the up
permost line.
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the accidental aspects of black hole thermodynamics fr
the more fundamental ones.

We have also seen several new effects in nonexten
systems which are worthy of more exploration. We ha
found that the local temperature can vary throughout a s
stance, and also that an isolated system can appear to be
distribution of different temperatures, i.e., canonical e
sembles. It would be interesting to apply this formalism
other theories.

Here, we have studied fairly simple systems, such as c
ters of lattices with different uniform long-range interaction
We have generalized the formalism for more complica
interactions, but it would be useful to explore this further.
particular, one expects many related phenomena in o
self-interacting theories. Non-Abelian gauge theories such
f4 theory may be interesting arenas of study. Numeri
simulations might also be particularly useful to study so
of these effects in more complicated systems.

It would also be useful to attempt to see these effe
experimentally. The case of two clusters of lattices might
realized by making the clusters very small, so that the sp
ing between lattice sites is much smaller than the range
the spin-spin coupling.
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APPENDIX A: THE DEFINITION OF LOCAL
TEMPERATURE

In Sec. II B, we derived the distribution of the microloc
ensemble by looking at a systemS and reservoirR in the
microcanonical ensemble. The local temperature was defi
as

bE[
]SR~E!

]E
, ~A1!

i.e., it was defined in terms of the entropy of the reservoir.
the noninteracting case, one tends to think of the tempera
as

bE8[
]SS~ES!

]ES
. ~A2!

Our result of Sec. II F show thatbEÞbE8 . The definitions
are equivalent in the case whereS is just a smaller part of a
much larger system, i.e., when we formally divide a lar
system intoR andS. In this case, one can show

bE5bE8 ~A3!

because of symmetry.
To see this, we write the total energy of the total system

f

8-13
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JONATHAN OPPENHEIM PHYSICAL REVIEW E68, 016108 ~2003!
m~E!5E1G~E!, ~A4!

whereE5ER1ES as before. Then taking the partial deriv
tive of Eq. ~A4! with respect toES and holdingm fixed, we
find

S ]ER
]ES

D
m

5211S ]G~E!

]ES
D

m

5211S ]G~E!

]ER
D

m

521. ~A5!

Combining this with Eq.~19!, we obtain the desired resu
Eq. ~A3!.

Other special cases are when the reservoir has no l
range interactions or when the system has no long-range
teractions. In the former case, one has

bE5bE8 F12S ]G~ES!

]ES
D

m
G , ~A6!

and in the latter case

bE5bE8 F12S ]G„ER~ES!…

]ES
D

m
G . ~A7!

Both these results follow from Eq.~19!. Note that in the
former case, one also has that there is only one term in
sum in Eq.~15!. This is because in this case,ER is uniquely
determined fromER5m2ES2G(ES).

APPENDIX B: A TOLMAN RELATION IN NEWTONIAN
GRAVITY

We have seen in the case of the long-range lattice mo
that it has behavior reminiscent of a Schwarzschild geo
etry. This indicates that many of the thermodynamic prop
ties one associates with general relativity may be presen
Newtonian gravity. Indeed, we will now see that
Newtonian-type interaction does lead to the Tolman relati
Here, we will see that it arises from the long-range inter
tions and not necessarily from the curvature of space-tim

We imagine that we have two gravitating systems w
massM1 andM2, and thermal energyE1 andE2 ~which is
the additional kinetic energy present in the molecules of e
system!, and we imagine that their volumes are fixed. T
systems are assumed to be a distanced apart but in thermal
contact~one might imagine that there is a conducting w
connecting the two systems!. We will consider the following
Newtonian-type interaction:

m5M11E11M21E22G1~M11E1!22G2~M21E2!2

2G12~M11E1!~M21E2!, ~B1!

whereG are the coupling constants. Note that the model u
the fact that thermal energy also gravitates. Using Eq.~19!
leads to a temperature ratio of
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T1

T2
5

12G12~M21E2!22G1~M11E1!

12G12~M11E1!22G2~M21E2!
. ~B2!

Examples of systems which have such an interaction
clude two gravitating spheres separated by a distanced, as
well as two concentric spherical shells at radiir 1 and r 2. In
the latter case, we haveGi5G/2r i andG125G/r 2, whereG
is Newton’s constant. To first order in the coupling constan
the temperature difference for two shells can then be writ
as

S T1

T2
D

shells

512G~M11E1!S 1

r 1
2

1

r 2
D . ~B3!

One can use a completely independent method to calcu
the temperature ratio in full general relativity for this cas
and one finds that the results are identical for weakly int
acting fields where general relativity and Newtonian m
chanics coincide. This, to a large extent, justifies the assu
tions we made at the beginning of this paper.

Essentially, for gravity, the derived temperature differen
coincides with what one expects from the Tolman relatio
except in this case, there is a correction due to the fact
we are not considering a thermal system in a fixed grav
tional background, but rather the thermal system is pa
responsible for the gravitational interaction. For this reas
we see that the ratio does not only depend on the ratios o
redshifts 12GMi /d, but on 12G(Mi1Ei)/d, i.e., the ther-
mal energyEi also contributes to the redshift factor.

One can also argue that the local temperature differenc
indeed real for a freely falling observer, who essentially w
be unaware of the additional gravitational interaction.
course, this already invokes the equivalence principle. Th
are two other interesting points worth mentioning. One
that in order to get the temperature difference one need
have a differences in charges~in this case, a difference be
tween M1 and M2). It is this asymmetry which is partly
responsible for the temperature difference. Additionally, o
needs self-interactions, i.e., the thermal energyEi needs to
also gravitate. Thus, our model is not identical to Newton
gravity, but includes the fact that all energy gravitates. T
then seems to be the key ingredient which gives tempera
differences.

APPENDIX C: CONTINUUM LIMIT

In Sec. II F, we looked at the local temperature and glo
temperature of two systems in equilibrium. We then exa
ined a simple example of two clusters interacting via tw
different uniform interactions. It is worthwhile to generaliz
this. For the case of a small number of regions, one can
the methods introduced earlier for just two regions. Ho
ever, one can imagine a more complicated interaction
one of Eq.~3! where the interaction term is not a consta
over any area, but instead changes from site to site. We
write insteadJi j 5J(xi j ) and then write all thermodynamic
quantities as a function of the positionxi j . In fact, it will
prove simplest to go to the case where we treat a system
continuum—it is then easy to go back to the discrete cas
8-14
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THERMODYNAMICS WITH LONG-RANGE . . . PHYSICAL REVIEW E 68, 016108 ~2003!
Let us now derive the relationships between the vari
local thermodynamical quantities. We essentially carry ou
similar procedure as we did in Sec. II F. In other words,
extremize the total entropy at fixed total energy. We consi
the entropy in terms of a densitys„r(x)…, wherer can be
thought of being related to a spin density. One can think or
as the local energy density in analogy to the quantityE, i.e.,
it is the continuum version ofE. More explicitly, we can
write r(x)5h(x)s(x), wheres(x) is the spin at each sitex
and h(x) is the energy gap at each site in the case wh
there is no interaction. We will however, leave it general, a
simply writes(x) for simplicity ~with the understanding tha
s is a function of the local energies!, i.e.,

S5E s~x!dx. ~C1!

We then extremize this by taking the variation and ke
ing m fixed. In order to do this, we append a constraint to
above expression, so that we instead extremize

L5S1lS m2E ṁdxD . ~C2!

Here, we are merely introducing the formalism. Indeed,ṁ
[dm/dx may be a complicated function, however, for t
general lattice model of Eq.~3!, ṁ is a functional of the spins
at each site. It is in fact also functional ofr. We can now
vary L with respect todr.

dL5E S ]s

]r
2l

]ṁ

]r
D dr dx

5E S b~x!2l
]ṁ

]r
D dr dx. ~C3!

Since this must vanish for alldr, we have that

b~x!5
]r

]ṁ
bo . ~C4!

Here, we have set the constantl5bo . One can see that in
the case of no interactions, we have

m5E rdx, ~C5!

and therefore

ṁ5r, ~C6!

so that we recover the standard result that the temperatu
a constant. One can likewise obtain

m~r!
]r

]ṁ
5mo . ~C7!

Here, the conserved energy can be defined as withEo as
ro5(]ṁ/]r)r and as with Eq.~17!, we have
01610
s
a
e
r

re
d

-
e

is

rb5boro . ~C8!

Finally, we can find the variation in the remaining ‘‘inten
sive’’ quantity—the pressurep for systems which have par
ticle flow. In order to let the system remain in mechanic
equilibrium, the pressure will have to vary throughout a su
stance in order to keep the substance from flowing. T
requirement gives

dp

dx
52F~x!, ~C9!

whereF(x) is the force due to the interaction. If the totalm
is simply some potential, then one would haveF(x)
5dm/dx.

APPENDIX D: GRAVITATING PERFECT FLUID

In this section, we will calculate the entropy of a sphe
cally symmetric, self-gravitating perfect fluid. The fie
equations which govern the gravitating perfect fluid are w
known @24#. Spherical symmetry implies that the metr
takes the familiar form

ds252e2Fdt21e2Ldr21r 2dV2, ~D1!

whereF andL are functions ofr. The stress-energy tenso
of the perfect fluid is given in terms of the energy dens
r(r ) and radial pressurep(r ) by

Tmn5~r1p!um~r !un~r !1p~r !gmn, ~D2!

whereum(r ) is the four-velocity of the fluid andgmn is the
metric. Einstein’s equation yield

e22L5122m~r !/r , ~D3!

where

m~r !5E
0

r

4pr 2rdr ~D4!

and

dF

dr
5

m14pr 3p

r ~r 22m!
. ~D5!

Outside the boundary of the fluidr 5R, the functionsL and
F reduce to

e22L(R)5e2F(R)

5122M /R, ~D6!

whereM[m(R).
There are three conditions for equilibrium. If the system

in thermal equilibrium, it must obey the Tolman relation@10#

T~r !5Toe2F(r ), ~D7!
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where To is the temperature as measured at infinity. Lik
wise, the chemical potential at any two points can be rela
by the redshift to the value of the chemical potential on
boundary by

m~r !5
m~R!eF(R)

eF(r )
. ~D8!

The condition for hydorstatic equilibrium~i.e., no radial in-
falling of any fluid element! can be found from local energy
momentum conservation

T;n
mn50, ~D9!

which implies

~r1p!f,r 52p,r . ~D10!

For a perfect fluid of constant density, this leads to the w
known Oppenheimer-Volkoff equation

dp

dr
52

~r1p!~m14pr 3p!

r ~r 22m!
, ~D11!

and simply balances the pressure gradiant with the force
to gravity until equilibrium is reached.

We can now calculate the total entropy of the syste
Sinces is the local entropy as measured by observers in
rest frame of the fluid, we can integrate over the sphere
obtain the total entropyS. The appropriate volume elemen
for a shell of thicknessdr is dV54pr 2eLdr and so

S5E
0

R

dVs~r !

5
4p

To
E

0

R

r 2eF1L@r1p2mon#dr, ~D12!

where we have used the Gibbs-Duhem and Tolman relati
In general, we cannot solve this expression explicite

however, for a perfect fluid with constant energy dens
r(r )5ro and constant number densityn(r )5no , the ex-
pressions for the metric and pressure are well known@19,25#.

m~r !5H ~4p/3!ror 3 r ,R

M5~4p/3!roR3 r .R,

N~r !5H ~4p/3!nor 3 r ,R

N5~4p/3!noR3 r .R,
hy

01610
-
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e
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.
e
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,

y

eF5 3
2 k~R!2 1

2 k~r ! r ,R, ~D13!

p5ro

k~r !2k~R!

3k~R!2k~r !
r ,R, ~D14!

wherek(r )[A122Mr 2/R3. It is worth observing that the
pressure atr 50 diverges as 2M /R→8/9 and as a result, this
limits the size of our sphere of fluid.

We can now compute the entropy using Eq.~D12!.

S5
4p

To
E

0

R

r 2drFro

k~R!

k~r !
2mno

3k~R!2k~r !

2k~r ! G
5

3k~R!R

4To
S 12

NmR

M D FA R

2M
arcsinA2M

R
2k~R!G .

~D15!

We see therefore that the entropy is no longer an ex
sive quantity and does not scale linearly withN andM, as it
would for a system whose entropy scales like the volume
the system. However, if we expand our solution in terms
the gravitational coupling,M /R, then we find, to zeroth or-
der in M /R,

S[@M2m~R!N#/To , ~D16!

and we recover the extensive scaling of the entropy. To fi
order inM /R

S[@M2m~R!N#S 12
2

5

M

R D Y Tp . ~D17!

One would like to calculate the entropy for various equ
tions of state. Unfortunately, one finds that for any realis
equation of state, the system is of infinite size. One can r
edy this by having different equations of state at differe
radii, but this makes calculating the scaling behavior of
entropy completely meaningless, since it would depend m
on how one changed the equations of state rather than on
properties of the states themselves. Another way of obtain
convergence, is to use the so-called ‘‘polytropic’’ equatio
of state such as

r5~bomo1b!pa/(a11). ~D18!

However, they are not true equations of state and come f
assuming that the matter is adiabatic as a function ofr. They
are therefore not suitable for states in thermal equilibrium
r,
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